
Computer Science
Technical Report

I

/A-_/- c#.._

 ¢331

Software Reliability Through
Fault-Avoidance and Fault-Tolerance
Reports #5&6 (3/1/91-2/29/92) on NAG-I-983

by

Mladen A. Vouk and David F. McAllister

North Carolina State University

Box 8206
Raleigh, NC 27695

(NASA-CR-Igg880) SOFTWARE
RELIABILITY THROUGH FAULT-AVOIDANCE

AND FAULT-TOLERANCE Technical

Report - 1 N_r. 1991 - 29 Feb. 1992
(North Carolina State Univ.) _¢ p

N93-13293

Unc I :! S

03/61 0084331

lb I

NASA/NAG- 1-983/Semi-Annual Reports No. 5.O&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 0-1

Technical Report Submitted to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Langley Research Center, Hampton, Va.

for research entitled

SOFTWARE RELIABILITY THROUGH
FAULT-AVOIDANCE AND FAULT-TOLERANCE

(Reports #5&6 on grant NAG-I-983)

from

Miaden A. Vouk, Principal Investigator, Associate Professor
David F. McAllister, Co-Principal Investigator, Professor

Department of Computer Science
North Carolina State University

Raleigh, N.C. 27695-8206
(919) 737-2858

Renort Period

Beginning Date: March 1, 1991.

Ending Date: February 29, 1992.

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DF_/Mar-92 1-1

Table of Contents

Summary of Accomplishments ... 2-1
Structure based testing, reliability growth modeling, design testability, and risk
evaluation ... 2-1

Reliability growth models and software risk management 2-3
Evaluation of Consensus Voting, Consensus Recovery Block, and Acceptance

Voting ... 2-5
Appendix I

Software Reliability and Testing ... 3-1

Appendix II
Extensions to the BGG Testing Coverage Tool ... 4-1

Appendix 1II
An Empirical Evaluation of Consensus Voting and Consensus Recovery Block
Reliability in the Presence of Failure Correlation .. 5-1

Appendix VI
Cost Modelling of Fault-Tolerant Software .. 6- I

NASA/NAG-1-983/Semi-AnnualReports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 2-1

Summary of Accomplishments

This document is a synthesis of two semi-annual reports (#5 and #6). It covers the period from
March 1, 1991 through February 29, 1992. The general topic of research was:

Strategies and Tools for Highly Denendable Software

Subtopics were:
Structure Based Testing, Reliability Growth. and Design Testability with Risk
Evaluation. The work on this topic is in progress and some encouraging preliminary
results are already available. Several reports and papers are available.
Software Risk Management. Work on the topic is starting as far as highly
dependable systems are concerned. However, some preliminary groundwork which
will enable transition of the study to critical aerospace applications has already been
undertaken. This preliminary work consists of studies relating to the general
principles of software risk management, acquisition of tools, and analysis of
reliability and availability of very large telecommunications systems.

- Software Faul_-Tqlcr_. Studies in this area are in the process of being completed.

Structure based testing, reliability
testability, and risk evaluation

growth modeling, design

The objective of this work is to continue development of code coverage based reliability and test
effectiveness models in order to improve fault-avoidance and fault-elimination during software
production. These models relate the quality of the testing, as measured through metrics such as
branch coverage, path coverage, definition-use pair coverage, etc., to the residual defect levels and
reliability of the software, and therefore are intended to efficiently guide the testing process as well

as offer insight into operational reliability of the product. An existing tool for computing different
software code coverage measures is in the process of being extended to include new and promising
metrics encompassed by the term "condition testing". A prototype is already available. The tool is
being used to investigate RSDIMU software. The theory of coverage based testing has been
extended to include more complex models. The models still need to be validated using experimental
results from the RSDIMU test suite.

Break-down bv sub-topic

iii Extended the BGG software tool for static and dynamic analysis of control
and data flows in Pascal code to include reduced data-flow graphing and
"condition testing" (or BRO) metrics.

The goal is to develop a sophisticated software tool for collection of complexity and
execution coverage information on (RSDIMU) Pascal code.

Accomplishments:

The Basic Graph Generation and Analysis tool set (BGG), for dynamic and static analysis
of Pascal code has been extended to allow analysis of reduced data-flow graphs and to
include Tai's "condition based" testing measures.

NASA/NAG-I-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DF/vl)/Mar-92 2-2

Reduced data-flow graphs are useful in analyzing data-flow anomalies in the code. They are
being used to study design testability issues.

Condition based testing focuses the testing process on predicates in a program. A new
condition testing strategy called Boolean and Relational Operator (BRO) testing has been
developed by Tai. To guide the test generation for BRO testing of a conditions, an algorithm
developed by Tai was incorporated into BGG. We are in the process of using the tool to
collect data on the relationship between the software errors discovered in RSDIMU software

and the BRO coverage achieved during RSDIMU testing.

Formulated several new coverage-based reliability growth and test
effectiveness models. The study of software reliability and availability
models suitable for use during development of highly dependable software
continues.

The general goal of this part of the study is to provide additional theoretical and empirical
basis for estimation of the reliability and availability of highly dependable software. Some of
the problems associated with such models are their accuracy and the size of their predictive
confidence bounds, and the inclusion into the models of the reliability of re-usable
components and combinations of components developed at different sites with under
different conditions.

Accomplishments:
The information collected with BGG has been used to formulate several preliminary
coverage-based reliability model. Three types of error models are under current
investigation: a Linear model, an exponential model and a Rayleigh model. PreLiminary
results indicate that for a given coverage metric there is a lower bound on the reLiability that
can be achieved when the metric is fully satisfied. However, based on the currently available
data it is not clear which of the models best describes the observed behavior of different

metrics over a population of programs. Full coverage of hierarchically higher constructs
(e.g. branch coverage is higher than statement coverage) would be expected to offer a better
reliability of the final product. Additional experimental and theoretical work is needed.

Designing software for testability.

The goal of the study is to provide empirical and theoretical information on fault avoidance
and fault elimination properties of different coverage metrics with respect to software design
for testability. Formal techniques will be used to identify critical software sections, and then
design coverage metric mix that would provide some assurances concerning the level to
which the code would being tested (e.g. parts of the code may be tested fulfdling branch
coverage, while parts my need a more powerful metric such as def'mition-use paths). We
believe that application specific design of metric mixes for the highest testability and
sensitivity to high potential loss (risk sensitive) faults is particularly important when
predicting behavior of highly dependable software. In addition, the study will provide
theoretical and empirical basis for pre-release and operational phase estimation of the
residual fault counts, reliability and availability of highly dependable software through
combined coverage and time based models. Some of the problems associated with such

models are the choice of the metric, the accuracy of point estimates, the size of the predictive
confidence bounds, and possible inclusion into the models of the reliability of re-usable
components and combinations of components developed at different sites under different
conditions.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 2-3

Accomplishments:
Research is still in progress. Currently BGG extensions that would enable computation of
appropriate metrics arc not fully implemented. The SDT CASE tool based on the Software
Description Languages for development of real-time systems is on order and is expected to
be delivered sometime this summer. The tools allows expression of software designs in
thenns of a specialdesign language. Code generation is automatic. The code would be
analyzed via BGG and design structures which generate most testable code would be
sought. Also in progress is development of a Software Risk Management system which
would coordinate software risk management activities associated with the development of
critical products. It is expected that a fault-tree analysis tool would be combined with SDT
and BGG outputs to attempt fault-tree retroactive analysis in order to identify safest design

strategies and code generation approaches.

Papers and reports. Several preliminary reports are available. Two papers
are in preparation.

The tool set has been described in a conference paper. BGG extensions in the area of are
described in Appendix II. Journal paper describing the tool set and its theoretical
underpinnings (particularly some new metrics such as control and data-flow based
definition-use-redefinition chains, BRO metrics, etc.) is in preparation. A paper on coverage
based reliability models will be presented in June 1992 at the Quality and Productivity

Research Conference (Coming, N'Y). Journal paper is in preparation.

.

*

3.

4.

5.

,

7.

8.

Vouk, M.A., and Coyle, R.E., "BGG: A Testing Coverage Tool," Proe. Seventh Annual
Pacific Northwest Software Quality Conference, Lawrence and Craig, Inc., Portland, OR,

pp212-233, September 1989.
Borger D, "BGG User's Manual", NCSU Department of Computer Science, 1990.
(available on request)

Vouk, M.A. and McAllister, D.F., "Software Reliability through Fault-Avoidance and
Fault-Tolerance, NAG-I-983 presentation, NASA-LaRC, Hampton, May 16, 1990.
Vouk, M.A. and McAUister, D.F., "Software Reliability through Fault-Avoidance and
Fault-Tolerance", NAG-I-983 presentation, NASA-LaRC, Hampton, January 15, 1991.

Vouk, M.A. and Tai, K.C "Software Testing and Reliability", Summary of the Presentation
Prepared for the Workshop on Issues in Software Reliability Estimation, Purdue University,
May 21, 1991 (Appendix I)
K.C. Tai, "Theory of Condition-Based Software Testing", Draft Paper, September 1991
(available on reques0
Vouk, M.A., Tai, K.C., Staats W., Koorapathy H. and O'Connor, J., "Extensions to
BGG Testing Coverage Tool," report in preparation (Appendix H).
Vouk, M.A., "Modeling Software Reliability and Fault Removal During Structure Based
Testing," 9th Quality and Productivity Research Conference, Coming, New York, June
1992 (paper accepted, final version in preparation)

Reliability growth models and software risk management

* Reliability and availability models suitable for use during

highly dependable software-based systems are being
evaluated.

development of
developed and

The goal is to provide additional theoretical and empirical basis for estimation of the
reliability and availability of highly dependable "software. These models include coverage
based and time-based models. Some of the problems associated with such models are their

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 2-4

accuracy and the size of their p_c_ct_:_-e ccJ_ffidencc bounds, and the inclusion into the

models of the reliability of re-usable components and combinations of components
developed at different sites with under different conditions. Expected future
accomplishments include: extended software testability modeling based on control and data
flow construct coverage, preliminary model of a multi-component (re-us_ and build)
reliability and availability, and formulation of a reliability models driven by specification and
design error analysis, so that problem areas can be identified prior to software
implementation.

Accomplishments:
Reliability and availability models suitable for use with very large critical multi-component
telecommunications systems are being studied. Particular attention is directed at multi-state
non-homogeneous Markov and semi-Markov models which can be used to account for a
variety of system failure types, as well as for hardware/software interaction. The knowledge
gained will be used in building appropriate models for the highly-dependable aerospace
applications.

Software process and risk management model appropriate for development
of very large and complex critical software systems is being studied.

The goal of this part of the study is to extend theoretical and empirical basis for risk
management of highly dependable software. Some of the problems associated with such
models are their predictive accuracy, the inclusion into the models of the risks associated
with re-usable components and combinations of components developed at different sites
under different conditions. Existing risk based software development models such as the
Spiral Model will be evaluated and if possible supplemented with state of the art reliability
models. Expected future accomplishments include: incorporation of coverage based
software reliability models into existing risk models and development of a new or extended
models, incorporation of existing and new multi-component (re-use and build) reliability
and availability models into a risk-driven development model for highly dependable
software, investigation of predictive properties of the existing and new risk models drive by
requirements and design change and error reports.

Accomplishments:
The models for software process and risk management models are being reviewed for
relevance to highly dependable systems. A research prototype of a software process and risk

management system is under constructions. The system is expected to provide guidance for
risk-based process and software design and provide risk evaluation tools such as software

reliability and availability estimation modeling, fault-tree analysis, schedule analysis and
statistical decision making.

Reports and papers in preparation:

lo

0

2.

D.S. Borger. M.A. Vouk, "Modeling the Behavior of Large Software Projects",
NCSU Center for Communications and Signal Processing, Technical Report
TR-91/19, June 91.
M.A. Vouk, Prec. "Engineering of Telecommunications Software", TRICOM '92,
pp 281-296, February 1992.
R. Cramp, M.A. Vouk, W. Jones, "On Operational Availability of a Large
Software-Based Telecommunications System", submitted to ISSRE92.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFIVI)/Mar-92 2-5

Evaluation of Consensus Voting, Consensus Recovery Block, and

Acceptance Voting

The objective of this study is to investigate advanced software fault-tolerance models in order to

provide alternatives and improvements in situations where simple software fault-tolerance strategies
break-down. One such situation is the presence of significant inter-version failure correlation which,
for example, makes reliable voter operation problematic. We have evaluated an improved voting
strategy called Consensus Voting (CV) which automatically adapts to different version reliability and
output space cardinality characteristics. CV reliability performance is always as good or better than
that of majority voting. We have also evaluated performance of Consensus Recovery Block (CRB)
and Acceptance Voting (AV) models. From the cost and reliability perspective the CRB model is
superior to all investigated stand-alone voting schemes, even in the presence of failure correlation.
The AV scheme reduces, or completely eliminates, as many wrong answers as possible by
acceptance testing them before dynamically voting on them. AV is very dependent on the reliability
of the acceptance test, but under special circumstances AV reliability and safety performance can be
better than that of CRB or CV.

Break-down by sub-tonic

The reliability performance of Consensus Voting (CV) was validated using
RSDIMU software. From the reliability perspective CV is superior to
majority voting as a stand-alone voting technique .

The goal of the study was to validate effectiveness of Consensus Voting, a technique
theoretically shown to posses considerable positive auto-adaptive properties in small output
spaces and in the presence of highly correlated failures.

Accomplishments:
a) Analyses confirm the theoretical and simulation results that the net effect of failure

correlation is to change the size of the output space in which a voter makes decisions.
b) Consensus Voting (CV) may in part compensate for the problems that otherwise arise

in the presence of failure correlation with classical voting strategies such as Majority
Voting. Consensus voting automatically adapts to different component reliability and
output space cardinality characteristics.

c) Theory prediction that in small output spaces CV performs as well or better than
majority voting, while in large output spaces its performance compares with 2-out-of-
n voting was conf'u'med. This was confirmed using RSDIMU programs.

The reliability and safety performance of Consensus Recovery Block (CRB)
was validated using RSDIMU software. From the reliability perspective
CRB is superior to any stand-alone voting technique.

The goal of the study was to validate effectiveness of Consensus Recovery Block, a
technique theoretically shown to superior to simple voting.

Accomplishments:
a) Analyses confirm the theoretical and simulation results that CRB is a superior

technique from the standpoint of reliability.
b) CRB remains superior even in the presence of considerable inter-version failure

correlation, although attention must be paid to the choice of the strategy used in the
voting stage (e.g. in some cases CRB with MV front end performs better than CRB
with CV).

NASA/NAG-I-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFIVD/Mar-92 2-6

l

c) CRB safety properties are good with high reliability versions, but are inferior to
Acceptance Voting, or even simple Recovery Block strategies, for medium to low
reliab_flity versions.

The reliability and safety performance of Acceptance Voting (AV) was
validated using RSDIMU software. Under special circumstances AV
reliability and safety performance can be better than that of CRB or CV.

The goal of the study was to validate effectiveness of Acceptance Voting (AV), a technique
designed to compensate for some problems that arise with CRB and CV in very small output
spaces and under very high failure correlation.

Accomplishments:
a) Analyses confirm the theoretical and simulation results that under special

circumstances AV reliability performance can be better than that of CRB, or CV.
For example, in binary output space, with N >5, there are regions of version
reliability where AV gives better system reliabilities than CRB or CV models.

b) In general, AV reliability performance is inferior to CRB and is very dependent on the
quality of its acceptance test stage.

c) In the case of medium to low version reliabilities, AV safety properties tend to be
better with than those of CRB under any voting strategy. However, when AV
acceptance test reliability is low, or version reliabilities are very high, AV may
perform worse than CRB. It usually remains safer than plain Recovery Block.

The cost of Consensus Recovery Block (CRB), Recovery Block (RB) and
N-Version Programming was studied. Result indicate that unless the voter is
perfect, N-Version Programming does not compete cost-wise with the other
two methods. Given failure independence CRB is superior to RB.

The goal of the study was to study cost-effectiveness of more common fault-tolerance
strategies in situations where interversion failure correlation is negligible.

Accomplishments:

a)

b)

In the case of failure independence Consensus Recovery Block and Recovery Block
are the only cost justifiable fault-tolerant techniques to be considered. Unless the
voter is perfect, N-Version Programming does not compete cost-wise with the other
two methods.

However, the hybrid method Consensus Recovery Block which contains both
voting and recovery block can provide considerable reduction in cost for a given
system reliability over the other techniques.

Papers and reports.

o

2.

.

Athavale A., "Performance evaluation of hybrid voting schemes", North Carolina

State University, Department of Computer Science, M.S. Thesis, December 1989.
M.A. Vouk, and D.F. McAllister, "Preliminary Report on Consensus Voting in the
Presence of Failure Correlation" in Software Reliability Through Fault-Avoidance and
Fault-Tolerance, NASA grant NAG- 1-983 Progress Report #2 (9/1/89-3/31/90), 1990.
Vouk, M.A. and McAllister, D.F., "Software Reliability through Fault-Avoidance
and Fault-Tolerance", NAG-I-983 presentation, NASA-LaRC, Hampton, May 16,
1990.

NASA/NAG- 1-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 2-7

4. D.F. McAllister and R. Scott, "Cost Modeling of Fault Tolerant Software",
Information and Software Technology, Vol 33 (8), pp 594-603, October 1991
(Appendix IV)

5. M.A. Vouk, D. F. McAllister, D.E. Eckhardt, and K. Kim, "An Empirical
Evaluation of Consensus Voting and Consensus Recovery Block Reliability in the
Presence of Failure Correlation," submitted to the Special Issue of Journal of
Computer and Software Engineering, March 1992, (Appendix IID

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-1
h

Appendix I

Summary of the Presentation Prepared for the
Workshop on Issues in Software Reliability Estimation

Purdue University, May 21, 1991

Software Reliability and Testing*

Mladen A. Vouk

North Carolina State University
Department of Computer Science

K.C. Tai
National Science Foundation

Washington, D.C.

* Research supported in part by NASA Grant No. NAG-I-983

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-2

Introduction

Software testing, complexity and reliability are three software research subjects that have been

studied for some time. However, there appears to be a lack of study on the relationship among

these subjects. We feel that more research on this relationship is needed and that such research will

lead to significant results for increasing software quality. In the presentation we described a simple

model that relates the code coverage and the error removal process. The model was verified using a

set of functionally equivalent programs. We also offered a model that relates software reliability

and coverage. Its verification is in progress. The described models provide a strong argument in

favor of judicious use of different control and data-flow metrics during testing, but the results also

indicate that considerable caution and understanding is needed when interpreting attained coverage

values.

2. Software Complexity and Testing

A number of program complexity metrics have been defined and many of them are directly or

indirectly related to testing strategies. Below we show examples of the correspondence between

complexity metrics and testing strategies:

complexity metrics

number of statements
control-flow based metrics
data-flow based metrics

testing strategies

<=>

<=>
<=>

statement testing
control-flow based testing
data-flow based testing

Currently it is not clear which metric(s) can best represent the complexity of a program, and indeed

is one single metric sufficient for this task. It is also not clear which testing strategy or strategies

are most effective for error detection. One consideration for the complexity of a program is how the

input domain of the program is partitioned. We are currently studying the relationship between the

conditions in a program and the partitions in the program's input domain. And we are using this

relationship as the theoretical basis for the condition testing approach.

3. Software Testing and Reliability

The reliability of a program is based on the results of testing. Existing reliability models can be are

based the use of random testing. The book Software Reliability by Musa, Iannino and Okumoto

include the following statements:

(1) "..., for accurate reliability measurement during test, select runs

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-3

randomly with the same probability expected to occur in operation."

(2) "... that the input space must be well covered for accurate reliability

measurement."

The major goal of research on non-random testing is to select tests that are effective for error

detection. The choice of a test criterion for a program affects the effectiveness of testing this

program and thus the reliability of this program. We have the following two hypotheses:

Hypothesis 1: If we apply a more effective testing strategy to test a program, then the resulting

program (after corrections have been made) is be more reliable.

Hypothesis 2: The reliability of a program is a function of the program's complexity, the test

criterion to be satisfied, and the errors detected during testing.

Existing reliability models, however, are not based on the above two hypotheses; they use random

testing for both the prediction and measurement of reliability. We feel that although the reliability

of a program is measured by using random testing, it could be predicted by using non-random

testing. Therefore the following questions arise:

(1) Is random testing as effective as non-random testing for error detection?

Should both random and non-random testing be used for error detection?

(2) How to predict the reliability of a program based on the results of non-

random testing (with or without random testing)7

For the first question, conflicting research results have been reported. The book by Musa et al.

mentioned the results of Curtis and Durant and concluded that random testing performs well with

respect to branch and path testing. However, our research results conflict with this conclusion.

4. Some S/W Testing and Reliability Research Issues Considered at NCSU

Multi-dimensional View: Structure Based S/W Testing
Metrics (e.g. Condition based testing, dud-chains, data and control-flow density)
Error Removal and Reliability Models
Random vs. Functional Testing

NASA/NAG-I-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92

Operational S/W Reliability and Availability

Commercial software with very large distribution (1,000 - 100,000 systems)
Early Identification of Operational Profiles

3-4

Special Development and Testing Approaches
Parallel Component Testing (application of Markov chain models)
Back-to-Back Testing
Releases vs. Continuous Process

ReliabRity of Software Fault-Tolerance Mechanisms

Hybrid models

5. Conclusion

We propose that the relationship among software testing, complexity and reliability be carefully

studied. This study is expected to produce useful results for improving the quality of computer

software. Some immediate research and development goals

• Investigate (in a quantitative terms) the place, role and value of structure based testing in the
software process.

• Provide theoretical foundation and experimental information on the costs and efficiency of
structure based testing and reliability growth monitoring

for software quality forecasting

test stopping criteria

test direction criteria (diminishing returns, testing efficiency saturation)

selection of error-sensitive test cases

accelerated testing

• Tools

Design for Testability and Reliability

NASA/NAG-1-983/Semi-Almual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-5

Workshop on Issues in Software Reliability Estimation
Purdue University

Software Reliability and
Testing

Mladen A. Vouk
North Carolina State University

Department of Computer Science

West Lafayette, IN, May 21, 1991

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-6

Some Research Issue
Considered at NCSU

I

Metrics
Error Removal and Reliability Models
Random vs. Functional Testing

Commercial software with very large distribution
(1,000 - 100,000 systems)
Early Identification of Operational Profiles

Parallel Component Testing (application
Markov chain model)
Back-to-Back Testing
Releases vs. Continuous Process

of

- Hybrid models

' NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92
3-7

Personnel

• NCSU Computer Science

Systems

Faculty Software

ms

m

u

Dr. Rance Cleaveland
Dr. David McAllister
Dr. K.C. Tai (currently with NSF)
Dr. Mladen Vouk

Some current graduate students and their research
topics (Software Testing and Reliability)

Mr. Young Choe (Ph.D.) - testing strategies of distributed

systems and protocols.
Mr. Randy Cramp (Ph.D.) - software reliability,
availability, and testing strategies.
Mr. Kim Kalhee (Ph.D.) - software reliability and testing,

back-to-back testing.
Mr. Garrison Kenney (Ph.D.) - software reliability.

Mr. Wayne Staats (Ph.D.) - data-flow analysis, structure
based testing, software errors.
Mr. Robert Coyle (M.S. with thesis)

based testing tools.
Mr. Dana Borger (M.S. with thesis)

modeling, testing strategies and tools.
Mr. Satya Vemulakonda (M.S. with thesis) -
failure correlation effects, errors and faults.

- software structure

- software process

multiversion

Other students, and researchers from other universities
and industry have been contributing through
participation in other projects and cooperative research
efforts.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-8
I

Overview

New Metrics: Condition Testing

DUD-chains, data and control flow

Vouk, K.C. Tai)

(K.C. Tai),

density (M.

Reliability Models: Error Removal and Reliability

Models (M. Vouk, K.C. Tai)

Testing Strategies: Random

Data (M. Vouk and K.C. Tai)

vs. Functional Test

, NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-9

Estimating Defects

During Operational

Thesis, NCSU, 1991)

in Commercial Software

Use, G. Kenney (M.S.

Two commercial software systems were

investigates. One deployed at 10,000 and the

other at 100,000 hosts, no record of CPU time,

field reported defect count is the primary driver.

A Weibull model appears to describe the process

quite well.

_u = N_13t(13"l)e'cxtl_

unique failure rate, total number of defects,

failure rate decay per system, system usage grow

rate.

NASA/NAG-1-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.(MAV.DFM)/Mar-92 3-I0

__r__[h_ A Custom-Designed
Reliability Model for a Stable Software

Testing Process

Process & system (based

Wholin, University of Lund,

on Work of

Sweden, 1991

Dr. C.

Violation
models.
ill

u

u

u

w

of standard assumptions, lack of adequate

independence of failures
testing profile
immediate correction
decreasing failure rate
testing load

A more detailed Markov chain model is being
developed.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-11

Structure Based Testing:
Motivation

m Testin Pr I m

Relating reliability to the overall software
development process, environment and participants
(developers, users, maintainers) - multidimensional
nature of the problem.

A prescriptive, or proscriptive models.

How reliable is the software: on release
operation?

and in

How robust is this reliability?

What is the quality of testing? When to stop testing?

Is testing process moving in the right direction? Is it
adequate?

How to (cost-efficiently) choose error-sensitive test
cases?

etc.

Problems are particularly acute for complex
software systems that need to be highly dependable.

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-12

Some Possible Solutions

Measure adequacy of the testing effort while it is
taking place. For example, functional and structural
coverage metrics.

Measure software reliability growth and estimate
residual fault count. Test "exposure time" in several
dimensions (e.g. CPU execution time, calendar
time, _r__r$_ _z__r® __r$_).

Guide testing by determining when diminishing
returns set in, and a change in strategy is required.

Relate employed reliability models to the stability
of the development and testing process.

Formulate prescriptive development and testing
models that guarantee certain lower bound on
reliability.

' NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-13

Software Error Removal and Reliability

"Classical" Failure
based models are
industry.

Intensity vs. Execution Time
in current use in software

They model the debugging process based on the
requirement that an operational profile be used.

Some of the
are
m

problems associated with such models

Use of true operational profile may translate
into an inordinate number of test cases (time) to
test the system statistically.
Operational profile may not be known.
Robustness of the estimates to changes in the
development and testing processes as well as
operational environment changes is usually not
considered.
Accuracy, size of their predictive confidence
bounds.
Inclusion into the models of the reliability of
re-usable components and combinations of
components developed at different sites with
under different conditions, etc.
Incremental development, releases, etc.

Alternative "exposure time" metrics, that would also
guide selection of test cases, may offer
complementary information and improve.

NASA/NAG- 1-983/Semi-Annual Reports No. 5,0&6.0/NCSU.CSC.(MAV)DFM)/Mar-92 " _- 14

Coverage C(M,S) is
quantified through
strategy (S).

computed for a construct
metric (M) and testing

No. of executed constructs for M under S
C(M,S) = Total no. of executable constructs for M under S

Examples
Metrics:

of Unit Testing Oriented Control

Lines of Code (executable)

Linear blocks of code

Branches

Partial Paths (linear-code-and-jump, LCAJ)

Paths

Flow

Examples of Unit Testing Oriented Data Flow
Metrics:

All definitions (in predicates and linear blocks)

All uses (in predicates and linear blocks)

All definition-use tuples

All definition-use paths

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-15

A typical hierarchy of control and data flow based
measures is the following one [Cla90]. The aim is to
indicate which of the criteria subsumes which other
criteria, and by implication which of the measures
may be superior as a practical complexity or
coverage measure.

Sheer number of paths does not necessarily qualify.
Even the simplest loop can result in an infinity of
paths.

All Paths

Ordered Context All DU-Pathe Required k-Tuples

.....,,..,All Required 2-Tuples
Reach All P-Uses

Some C-Uses "_I_ All P-Uses

All C-Uses /

Some P-Uses'_"'---,-__
All Defs All Branches

All Blocks

NAS A/NA G- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV ,DFM)/Mar-92 3-16

Tools

We have developed a tool (BGG) that handles static
and dynamic analysis of control and data flow
graphs (global, inter-, and intra-procedural data
flow) for program units written in full Pascal (unit
is considered to be about 4,000 lines of code).

Examples of
branches,
definition-use
definition-use

computed static measures:
paths, cyclomatic number,
(du) pair counts, count of
paths, average definition-use

path lengths, p-uses, c-uses, and all-uses.

Dynamic coverage is computed for definition-
use pairs, definition-use-redefinition chains,
p-uses, c-uses and all-uses.

The tool is used to analyze different sets of
programs.

NAS A/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-17

Some Motivating Results

Increased code coverage brings about increased
fault-detection.

10 100.0%%

u) 8
m

:3

IL

6

m

-- 4

E
:3
(J

2

Coveraq

Faults
\

Program P9 - 786 Functional Test Cases
Total Number of Detected Faults: 14

10 100

Number of Test Cases

90.0%%
Q
O_

L

0
• 80.0%%
O

O

O 70.0%%
O

m

60.0%%

50.0%%

1000

Growth of block coverage and of the number of detected
and corrected faults with the growth in the number of

executed functional test cases.

NASA/NAG-1-983/Semi-AnnuaJ Roports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-18

The coverage provided by random data is very
dependent on profile of the test data, and use of
extremal and special value test cases usually
provides a better results and detects more faults.

A

V

95

85

L.

>
O 75

{J

O
O

m

55

orm Random

Program

• " " " w I • " " "1 " ° • •

1 10 100 1000

Number of Test Cases

Comparison of linear block coverage observed for two
random testing profiles and a functional data set with a

Pascal program.

• NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-19

There appears to be considerable variability in the
meaning a given coverage C for metric M caries
over a population of functionally equivalent
programs

For instance, the same set of test cases may not
provide the same level of coverage over all
functionally equivalent software, and that for
exactly the same test data sets coverage could vary
as much as 22% across the population of
functionally equivalent programs.

All indications are
- that coverage has

stand alone measure,
that coverage "exposure"
associated with software
growth, and

very limited meaning as a

should be directly
reliability (quality)

that appropriate models relating development
and testing strategies, coverage, and reliability
need to be investigated.

Several structure based testing
models are under investigation.

error removal

A two-dimensional structure and time
reliability model is under development.

based

Results are encouraging, but confirm that
considerable ca_ti0n i_ ne_de_l in th_ interpretation
of coverage measures.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-20

Structure Based Testing:
Some Immediate Goals

Investigate (in a quantitative terms) the place, role
and value of structure based testing in the software
process.

Provide theoretical foundation and experimental
information on the costs and efficiency of structure
based testing and reliability growth monitoring

- for software quality forecasting

- test stopping criteria

test direction criteria (diminishing returns,
testing efficiency saturation)

- selection of error-sensitive test cases

- accelerated testing

• Tools

• Design for Testability and Reliability

NAS A/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-21

Structure Based Testing:
Error Removal Models

Rayleigh Model

Exponential Model

Linear Model

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-22

Some simplified assumptions about the coverage
based testing and fault removal process:

(1) Coverage based testing and fault removal, in
the first approximation, is equivalent to
sampling without replacement.

As the result: fault detection rate is
_roportional to the coverage, 1 > C(M,S)> 0.

To increase (fulfill) coverage we generate test
cases which would cover as many yet
uncovered constructs as possible. "Re-use" of
constructs through new paths that exercise as at
least one new construct is "ignored" by the
metric M.

Order of execution of test cases is ignored (and
is assumed random) unless otherwise dictated
by the testing strategy S.

(2) The rate of fault detection is proportional to the

number (or density) of residual faults, er,

detectable by metric M under strategy S.

(3) For each test set T generated under S and
monitored through M, there is a minimal
coverage and maximal coverage achievable.

i

NASA/NAG-I-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3 -23

M.space of program P

Entry

Exit

I

(

1

...i_. _ m =-

-1"----

,2..__=

As the number of unexefoted M constructs shrinks
the probability increases of "trapping" a
M-detectable fault that remains.

@ Each fault, X, has associated with it probability
p(M,S,X) that it is detectable by M under S. So

El-

r -'- Y p(M,S,Xi)
i=l

where Er is the actual number of faults remaining.

The number of faults (initial, detected, remaining,
etc) could be normalized over the total number of
M constructs in program P (density).

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mat-92 3-24

Probability of Detecting X by M under S

_7)

)

(instead of

C = A*4 C=B+3

B = 2)

Strategy: Cover all branches at least once.

Full branch coverage can be achieved
ways. For example via paths:

(1-2-4-5-7, _o:__7), or (1-2.4.6-7,
or (1-2-4-5-7, 1-2-4-6-7, 1-3-4-5-7), etc.

in many

1-2-4-5-7),

Only some of these path combinations detect the
error.

' NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DF'M)/Mar-92 3-25

• The fault detection rate with respect to coverage is

where Ed is the number (or density) of detected
faults, and C is C(M,S).

Under a simplifying assumption that fault
correction is instantaneous and perfect (i.e., no

fault generation, Eg = 0), the number of corrected

faults, Ec, is equal to number of detect faults.

• Number (or density) of residual faults is

Er = ET - Ec

where ET is the total
(M-detectable) faults in
C=0.

(effective) number of
program P at coverage

• Hence

dec
dC = k (ET " Ec) C

NASA/NAG-1-983/Semi,_ual Reports No. 5.0&6.0/NCSU.CSC.(MAV.DFM)/Mar-92 3-26

Solution of this differential equation in the range

0<C< 1, and initial condition ec = 0 for C < Cmin

dec

(I_T - £c)
=kCdC

yields

In(l- _--C-C): .1 k (C2. Cmin 2)
ET

or

t;c = 8T[1 - e'[3(C2"Cmin2)]

This is a variant of the Rayleigh distribution, i.e. a
special case of the Weibull distribution.

NASA/NAG-l-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-27

Examples of Experimental Results

10

O 2

0

0.0%

Program P3 - 1196 Test Cases
Total Number of Faults Detected is 9

DUD-ch_

20.0%

p-u se s-----

c-uses

DU-pai

40.0% 60.0%

Coverage (%)

80.0%

branches

locks

100.0%

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-28

Direct Fit of _c = ET[1 - e'_(C2"Cmin2)]

w
u

O3
U.

>

(=
n

:3

E

(J

10

6

6

4

2

0

-2

NCSUC- 1196 CertificationTest Cases

(Total numberof detected faults Is 9)
I: I

I

!

..+..._.........O.......
[

o!ifaults +ip'usei!. _

.................... ii...................... 2. _.i _ '_.i. + •

i _ 1 ' i
i i i P + E

................:......................_....................'i.....................i............i.........:....................
+ + i 1 1 ii

t 1 + + +
J i+ + ! i

_. i I | l :
I I I I

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Coverage

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-29

Power of Coverage Metrics

_c(C=l)
< 1 -. e'l_(l'C2min)

_T

A

A

O1
II

Ill

O
tU

I

e-
ra

1

t
0

-1

-2

DUD's

Program P3
(Total Number of Faults is 9)

Blocks

• I ' I " ' | •

0.0 0.2 0.4 0.6

C*'2 - Cmln**2

[]

P

I
I

i
i
I

0.8

The sharper the slope, J3, and the smaller Cmin, the

higher is the potential of the metric in detecting
faults.

Block : p-use : DUD-chains _- 1 : 2 : 6

NASA/NAG- 1-9$3/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-30

Fault Detection Properties of Random
n F n i n ! Te in

In our experiments most of the time random data
showed poorer overall fault detection properties
than functional data. However, random testing did
uncover a certain number of faults not detected by
functional testing.

Fault Type
Test Set Dissimilar Similar Total

Random+ESV-I 54 7 61
Random 48 2 50
ESV 48 7 55

Random but not ESV 6

ESV but not Random 6

0 6

5 11

The number of faults detected by ESV and 500 RANDOM-Ib cases.

Actual Program 400 ESY-I 500 RANDOM-Ib Total

ncsua Pl 4 2 4
ncsub P2 5 1 6
ncsuc P3 7 3 8
ncsud P4 9 3 11
ncsue P5 8 3 8
uclaa P6 5 3 5
uclab P7 3 1 4
uclac P8 6 4 7
uclad P9 9 3 - 5 10
uclae P10 3 1 4

uiuca P 1 1 4 3 4
uiucb P12 4 + 1 + 4 +
uiucc P13 6 3 9
uiucd P14 6 $ 6

uiuce PI5 5 3+ 6
uvaa P16 6 1 6
uvab P17 5 4 6
uvac PI8 5 1 7

uvad PI9 1+,(6)? 1 6
uvae P20 4 2 $

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-31

Coverage by Random and Functional
Testing

Our experiments show that as many as 40% of the
branches could be missed by random test data.

definition-use pairs

80 -i)___+._+-------;- : : : : : • :

70 _//f_/°-4_C _ _ linear blocks

o_ 60g branches .,+ :: : ° : : -
8 i_/ Efficiency of Random Testing

30
1 0 0 1 01 10 2 10 3

Number of Test Cases

Coverage observed during random testing of a program
from the 6-version set.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-32

Block Branches

o.o. /7""_ - Y----

_) GO.ON, p-uso

40.0%g,

20.0% .chains

HCSUC - 1196 Certification Testing Cases

0.0% I• • • • "'! • • • ""l

1 o 1 00 1000

Test Cases

10000

NASAT'NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 3-33

W rk in Pr r s nd F ur ork

Coverage Based Reliability Models

Failure Intensity vs. Covered
functions or sub-functions.

(tested) program

A
¢/#
qJP
G¢#

m
t'g
"*" .1

I'="

¢¢t

l=,,

m
u_

.01

¢¢

¢¢
i

Branch

Block

Coverage

UCLAD - Failure Intensity vs Covera
796 ESV-I Test Cases

O

m

¢U

u. .001
0.0% 10,0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

Coverage (%)

Function based reliability models.

How to measure the extent of function synthesis
provided by test cases?

NASA/NAG-1-983/Semi-Armual Reports No. 5.0&6.0/NCSU.CSC.(MAV)DFM)/Mar-92 2-34

One possibility is a combination of the code
structure based metrics (control flow, data flow,
hybrid) with testing time exposure to capture both
the test quality and the reliability growth.

Work on formulation of a two component (coverage,
time) reliability models is in progress.

1

I_- .1

g

.01

-__

tU

M...001

0.0%

L NCSUC - Failure Intensity vs Coverag

J _ 796 ESV-I Test Cases

• I ' I ' I " I ' I ' I " I " I ' I "

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

Coverage (%)

• NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-1

Appendix II:
Extensions to the BGG Testing Coverage Tool

Abstract

BGG, Basic Graph Generation and Analysis tool, was originally developed to help studies of static
and dynamic software complexity, and testing coverage metrics. It is composed of several stand-
alone modules, it runs in UNIX environment, and currently handles static and dynamic analysis of
control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written in
full Pascal. We describe additions to the structure of BGG in the form of the facility to generate and

analyze reduced data-flow graphs, and the facility to perform Boolean and Relational Operator
(BRO) testing analyis. Condition based testing focuses the testing process on predicates in a

program. A new condition testing strate_, called BRO testing was developed by Tai. To guide the
test generation for BRO testing, an algorithm developed by Tai was incorporated into BGG. We are
in the process of using the tool to collect data on the relationship between the software errors
discovered in RSDIMU software and the BRO coverage achieved during RSDIMU testing.

I. Introduction

The system, BGG (Basic Graph Generation and Analysis system), was built as a research tool to

help understand, study, and evaluate the many software complexity and testing metrics that have

been proposed as aids in producing better quality software in an economical way [Appendix A].

BGG allows comparison of coverage metrics and evaluation of complexity metrics. It can also

serve as a support tool for planning of testing strategies (e.g. stopping criteria), as well as for

active monitoring of the testing process and its quality in terms of the coverage provided by the test

cases used. It has now been extended with data-flow graphing analysis capabilities and with new

structure based metrics for Boolean and Relational Operator (BRO) testing [Tai90] capabilities.

Both will be used in the research on software desing testability. Section II of the report provides an

overview of the data-flow additions to BGG. Section tll gives a brief overview fo the BRO theory

and some details concerning the implementation of the metric in the BGG context. Section IV

illustrates some of the tool capabilities through examples. A brief description of the tool and its

current "man" pages are shown in Appendix I of this report.

II. Data-flow extensions

Originally, BGG was written for control flow graph analyses with data flow computations based

on the control-flow graph information for all variables in a given program. In a control flow graph

the nodes represent the basic blocks and the arcs represent possible threads of execution, where a

NASA/NAG- 1-983/Semi-Annual Repom No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-2

basic block is defined to be a series of statements without branching. Each conditional statement

is considered its own basic block that has multiple target blocks which are determined at runtirne.

The methodology used by BGC is to fast build control flow graphs for each of the procedures of a

given program. Each node of the graph indicates which variables were assigned (defined) a value

or were used in the calculation of another variable. From these graphs, the data flow is calculated.

The info,wnation ealcuated includes definition-use (du) pairs, definition-use-clef'ration (dud's)

triplets, p-uses, and c-uses.

The problem with this methodology was that for most variables not all nodes or paths of the

control flow graph are relative. That is, for a given variable, entire sections of the graph would not

conta_,n either a definition or use of that variable, however, the algorithm used in bge required that

all possible paths be explored. This exhaustive search is necessary but very time consuming.

To help reduce the time required to analyze a program, the control flow graph for each variable is

fh-st reduced to a data flow graph before analysis is performed. A data flow graph is one where

only the nodes that contain either a definition or use a variable remain. This transformation,

therefore, removes all unnecessary nodes and ares from the graph, reducing the overall size.

This facility is available as a separate option on invocation of BGG (see Appendices A and

Appendix B of this paper).

III. BRO Extensions

Boolean and Relati0n OperaT_ teStfiag focuses _ _--c]_tion of_B0olean _d rela-tional operator

errors in a condition. An algorithm for selection of a minimum set ot testing constraints is

described in [Tai90]. A minimum set of testing conditions consists of two sets of tests, min_t_ or

the smallest adequate set that makes the expression true, and min_f, or the smallest set that makes

the expression false. BRO algorithms has been incorporated in a special version of BC_. Both the

algorithms and the metric are still under study. The following example illustrates the algorithm.
= .

The following describes the steps in the calculation of a BRO set for the expression

"(x < 0) and (y > 0) or (x < y)". Braces { } denote a set, and each element of the set is a

relational operator. The true and false sets calculated by our program written to automate the

process of computation onf min_t and min_f sets are:

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFIV0/Mar-92 4-3

rain t =

{
{ <,>,> },

{ <,<,< }

}

min f =

{
{ <,=,> },

{ <,<,> },

{ =,>,> },

{ >,>,= }
}

The BRO set is the combination of the min_t and min_f sets. Note that min_t are the test cases

that make the expression true and the min_f make it false. This set is ordy one of many possible

sets that could be formed for the same expression. The following description clearifies how the

numerous sets could be formed.

The first step in calculating the BRO set is to form the min_t and min_f for the various

subexpression. A bottom-up parse is used to ensure that proper presidence and grouping is

maintained. The min_t and min_f for a minimal subexpression are:

X < y -- mint = { (<) } min f = { (=), {>))

x > y -- min t = { (>) } min f = { (=),{<) }

x = y -- min--t = { (=) } min--f = { (<),{>) }

x <> y -- mint = { (<), (>) } mln f = { (=) }

x -- mint = { (T) } min f = { (F) }

For the expression mentioned above, the algorithm starts by generating the mint and minf for the

first subexpression, "(x < 0)", and places them on two separate stacks, one for each of the

minimal sets. As the expression is read, the boolean operator "and" is remembered for processing

after the min sets for the second subexPress!on have been determined and placed on the

appropriate stacks.

The stacks would appear as folows:

min t(y > O) = { (>) } min f(y > O) = { (=), (<) } (tos)

min t(x < O) = { (<) } min f(x < O) = { (=), (>))

true stack false stack

The next is to combine the two entries on the stack to produce a single set which will represent the

subexpression "(x < 0) and (y > 0)". To produce the min_t of this "and" subexpression, the two

NASA/NAG- 1-983/Semi-A1mual Reports No. 5.0_6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-4

min_t sets are combined using the onto funcdon described in [1]. The resulting set is constructed

such that each ele_rent of both sets must appear at least once in the f'mal set. For our example, the

combination is trivial in that the resulting set is { (<,>) }. This set wiU make the sub expression

true.

Calculating the min_f is a little trickier. From the min_t of the combined subexprcssion, choose

two different members unless there is only one as in our case. Repla_ the left most operator with

a member of the left subexpression's min_f(x < 0) to make the entire subexpression false. Repeat

for all elements in the min_L With the second element choosen from the resulting min_t, replace

the second operator with the elements of the right most's min_f. The resulting stacks arc:

min t((x < O) and (y > O) -- { (<,>) }

true stack

min f((x < O) and (y > O) -- { (--,>), (>,>),

(<,=), (<,<) }

false stack

What is actually happening here is that from the element(s) chosen from the mint, we are holding

one of the subexpression true and forcing the other to be false by using the min_f sets from the two

subexpression. The next step is to hold the other subexpression true while making the other one

false. From this algorithm, there is no way that a set element of (=,=) could be generated for any

BRO set.

Once calculated, the next boolean operator is observed and stored for processing once another

subexpression has been completed. In our example, the subexpresion (x < y) is encountered and

the appropriate min sets are placed on the stack. Now the processing of the "OR" boolean

operator is just opposite of the "AND" in that the two minf sets are combined using the onto

function and the elements of the two min_t currently on the stack are combined with two different

elements from the resulting min_f.

So, before processing the stacks arc"

min t(x < y) _ { (<) }

min t((x < O) and (y > O) = { (<,>) }

true stack

NASA/NAG-1.983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/'Mar-92

min f(x < y) = { (=), (>) }

min_f((x < O) and (y > O) = ((>,>), (=,>),

(%<), (<,=)

false stack

4-5

The onto funfion states that each element of both sets must appear at least one time in the resulting

set. Our strategy was based on linked list. Each element in a the set was a node in the linked list.

The first element of each list were combined, the second element, and so forth until one list was

exhausted. When this happened the last element of that list is combined with the remaining

elements from the other list. The resulting min_f = { (>,>,ffi), (=,>,>), (<,<,>), (<,=,>) }.

Now, to calculate the mint, two independent elements of the min_f set are selected. The

algorithm used selects (<,<,>) and (<,--,>) but the choices are arbitray. The three members of

these two elements represent the conditions which will make the entire expression false. Now, the

theory replaces one of the subexpressions with a condition which will make that subexpression

mac, resulting in the entire expression being true (since we are or'ing the subexpressions). The left

subexpression ((x < O) and (y > 0)) can be made true by replacing the fast two members of either

but not both elements with the mint for that subexpresion, which is (<,>). The resulting element

is (<,>,>).

The clement not chosen above iscombined with themint of the subexpression (x < y) with the

rightrnostmember being replaced.This willproduce an element (<,<,<). As mentioned, the

union of the mint and min_f arctheBRO set forthisexpression.Although thisisa BRO set,the

selectionalgorithmcan produced differentBRO set.Even the orderingof the element members

can produce different BRO set

To date,we have implemented the productionof a singleBRO set.Afterstaticallycalculatingthis

set,thecode isinstrumentedin such a manner thatatruntimetheBRO setelements can be match if

they are executed. The implcmention was interestingfor a couple of reasons. Fast, the theoryis

type independent but the implementation was not able to be. That is, in pascal, variables of

pointer or boolean type may be compared to determine equality/inequality, but not greater or less

than. This caused problem since variable types are not considered by the tool and the selection of

the mint and min_f set for the inequality operator does not then bold for variables of this type.

The other problem had to do with handling the various language construct. The theory does not

provide min sets for the "for loop" or case statement. In these cases, we chose to handle the for

NASA/NAG-I-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFtV0/Mar-92 4-6

loop as the expression x <= upper bound or x >= lower bound depending if x in increment or

decremented. For the case statement, we chose to handle it as a series of x = value with the each

case statement having a new block number. This criteria produces only branch coverage but no

better.

Our future work will be to extend the current tool to calculate all possible BRO set for a given

expression. Once calculated and statistics generated, a comparison of the coverage provided by the

BRO sets will be perfo_ We are interested in determining if a particular bro set "out performs"

another in providing better code coverage and is there a selection criteria that can be generalize& A

second issue we wish to examine is the inequality operator and its relationship to the bro set.

Here, we wish to use the min sets of mint = { (_) } and min_f = { (=) } and compare the results

to the current usage. If we find that the rain sets must be as described by [Tai90], then type

information will need to be used in the implementation of BRO.

[Taig0] K.C. Tai, "Theory of Condition-Based Software Testing", NCSU Computer Science

Technical Report, TR-90-11 (September 91 revision)

NASA/NAG-1-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-7

- Section Appendix A

BGG: A Testing Coverage Tool 1

Mladen A. Vouk, Robert. E. Coyle 2, Dana Borger

North Carolina State University
Deparunent of Computer Science, Box 8206

Raleigh, N.C. 27695-8206

Extended Abstract

The system, BGG (Basic Graph Generation and Analysis system), was built as a research and

teaching tool to help understand, study, and evaluate the many software complexity and testing

metrics that have been proposed as aids in producing better quality software in an economical way.

BGG allows comparison of coverage metrics and evaluation of complexity metrics. It can also

serve as a support tool for planning of testing strategies (e.g. stopping criteria), as well as for

active monitoring of the testing process and its quality in terms of the coverage provided by the test

cases used.

A simplified top level diagram of BGG is shown in Figure 1. BGG is composed of several

modules which can be used as an integrated system, or individually given appropriate inputs, to

perform static and dynamic analyses of local and global control and data flow in programs written

in Pascal.The UNIX version of the tool curr_enflyhandles fullBerkeley Pascal,while the PC

versionacceptsTurbo Pascal.Extension toC isplanned.UNIX versionof BGG isitselfwrittenin

Pascal,C and UNIX C-shellscript,while PC versioniswritteninTurbo Pascal.

BGG pre-processor provides the user interface when the tool is used as an integrated system. It

also performs some housekeeping chores (checks for file existence, initializes appropriate language

tables and flies, etc.), and prepares the code for processing by formatting it and stripping it of

comments. The language tables are generated for the system once, during the system installation,

and then stored. The front-end parsing is handled through the FMQ generator [Fis88]. This facility

also allows for relatively simple customization of the system regarding different programming

languages and language features. Also, each of the BGG modules has a set of parameters which

1Research suppocted in part by NASA Grant No. NAG- 1-983
2Teletec Corporation, Raleigh, N.C.

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DF1VO/Mar-92 4-8

can be adjusted to allow analyses of problems which may exceed the default values for the number

of nodes, identifier lengths, nesting depth, table sizes, etc.

Souroo

(:ode

File

Graph |aurae

Camp

Inmtrumantod

Program

pipe

Figure 1. Schematic diagram of the _o_tion flow _ the BGG system of tools.

Pre-processed code, various control information and language tables arc used as input to the

BGG-Static processor. This processor constructs control and data-flow graphs, and performs

static analysis of the code. These graphs are the basis for all further analyses. Statistics on various

metrics and control-flow and data-flow anomalies, such as variables that arc used bu t never defined

etc, are reported. BGG-Static also instruments the code for dynamic execution uaeing.

When requested, BGG executes the instrumented code with provided test cases and analyzes its

dynamic execution trace through BGG-Dynamic. The dynamic analysis output contains

information (by procedures and variables) about the coverage that the test cases provide under

different metrics.

When instrumenting code BGG inserts a call to a special BGG proc_ure at _e beginning Ofr_h.

linear code block. It also adds empty blocks to act as collection points for-br_ches_'l_e

NASA/NAG-1-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-9

instrumentation overhead in executable statements is roughly proportional to the number of linear

blocks present in the code. In our experience this can add between 50% and 80% to the number of

executable lines of code. The run-time tracing overhead for the instrumented programs is

proportional to the number of linear blocks of code times the cost of the call to the BGG tracing

procedure. The latter simply outputs information about the block and the procedtae being executed.

The raw run-time tracing information may be stored in temporary files, and processed by

BGG-Dynamic later. However, often the amount of raw tracing information is so large that that it

becomes impractical to store it. BGG-Dynamic can then accept input via a pipe and process it on-

the-fly. Because BGG-Dynamic analyses may be very I/O, memory and CPU intensive,

particularly in the case of data-flow metrics, interactive testing may be a slow process. Part of the

problem lies in the fact that BGG is still a research tool and was not optimized. We expect that the

next version of BGG will be much faster and more conservative in its use of memory. It will

permit splicing of information from several short independent runs, so that progressive coverage

can be computed without regression runs on already executed data.

Currently BGG computes the following static measures: counts of local and global symbols, lines

of code (with and without comments), total lines in executable control graph nodes, linear blocks

of code, control graph edges and graph nodes, branches, decision points, paths (the maximum

number of iterations through loops can be set by the user), cyclomatic number, def'mition and use

counts for each variable, definition-use (du) pair counts, definition-use-redefinition (dud) chain

counts, count of definition-use paths, average definition-use path lengths, p-uses, e-uses, and all-

uses. Dynamic coverage is computed for definition-use pairs, defmition-use-redefmition chains,

p-uses, c-uses and all-uses [Fra88]. Definition-use path coverage and path coverage for paths that

iterate loops k times (where k can be set by user) will be implemented [Nta88]. There are several

system switches which allow selective display and printing of the results of the analyses.

Outputs like the one shown in Figure 2 provide summary profile of each local and _ symbol

found in the code. How many times it was defined (or pseudo-def'med), used (or pseudo-used),

how many du-pairs it forms, how many d(u)d chains, etc. This static information can be used to

judge the complexity of procedures, or the complexity of the use of individual variables. In turn,

this information may help in deciding which of the variables and procedures need additional

attention on the part of the programmers and testers.

BGG provides coverage information on the program level, and on the procedure level. Figure 3

illustrates output from the dynamic coverage processor "BGG-Dynamic", delivered in the

NASA/NAG-1-9$3/$emi-A_maalReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-10

"Dynamic Coverage Analysis" output t-de, for a function called FPTRUNC and a set of 103 test

cases. In the example some of the output information normally delivered by BGG has been turned

off, e.g. all-nses.

For eachprocedureBGG-Dynamic fn'stoutputsa summary of branchcoverageinformation:the

blocknumber,statementnumbers encompassed by theblock,thenumber of timestheblockwas

executed,and theexecutionpathstakenfrom theblock(node).For example,node 5 inFigure7

was executed724 times,6 timestonode 3,and 721 timestonode 7.Branches which have not

beenexecutedshow up ashavingzeroexecutions.

The branchtableisfollowedby a summary ofcoverageby metrics:coveragefornon-emptyblocks

(blocksthathave notbeen insertedby BGG), linesofcode withinexecutablenodes,and branch

coverage.This isfollowed by coverage for data flow metricsby symbol name. The static

definition,use,du-pair,d(u)d,p-use,etc.counts for a variableare printedalong with the

informationon itsthedynamic coverageexpressedaspercentageoftheexecutedstaticconstructs.

For each identifier,thisisfollowedby a detailedlistand descriptionofconstructsthathave not

bccn executed (e.g.du-pairsor p-uses).Executioncoverage outputtablescan be printedin

differentformats(e.g.countsofexecutedconstructs,ratherthanpercentages),and withdifferent

content(e.g.all-uses).

Apartfrom providingstaticinformationon thecodecomplexity,and dynamic informationon the

quality of test data in terms of a particular metric, BGG can also be used to determine the point of

diminishing returns for a given data set though coverage growth curves, and help in making the

decisions on when to switch to another testing profde or strategy. We are currently using BGG in

an attempt to formulate coverage based software reliability models by relating code complexity,

testing quality (expressed through coverage), and the number of faults that have been discovered in

the code. BGG is also an excellent teaching tool, and is used in the Software Engineering and the

Software Testing and Reliability courses taught at North Carolina State University, Department of

Computer Science.

[Fis88]

[Fra88]

[Nta88]

C.N. Fisher and R.J. LeBlanc, Crafting a compiler, The Benjamin/Cummings Co.,
1988.
P.G. Franld and E.J. Weyuker, "An applicable family of data flow testing criteria,"
IEEE Trans. Soft. Eng., Vol. 14 (10), pp 1483-1498, 1988.
S.C. Ntafos, "A Comparison of Some Structural Testing Strategies", IEEE Trans.
Soft. Eng., Vol. SE-14 (6), pp 868-874, 1988.

NAS A/NAG- 1-983/Scmi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-II

888_88

_dd4d_d

_88_88
dd_M_M

,=_Q ¢,q

oo oo
_ I_

_CD_D

gg_ _w •

_4

NASA/NAG- 1-983/Serni-Annual Reports No. 5.O&6.0/NCSU.CSC.(MAV_DFM)/Mar-92 4-12

f-_ e_ t"q 0 ae

|

=

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4.-13

Appendix B

VAX bgg (se)

NAME

bgg - performs static and dynamic analysis (execution coverage) of
Pascal code.

SYNTAX

bgg file name.p [up to two options]

DESCRIPTION

The bgg command compiles and performs static and dynamic analysis of

Pascal code using a number of metrics.

This version of bgg is generated for analysis of Berkeley Pascal or its

subset.

Analysis can beperformedusing program control graph or data-flow graphs

for individual variables% Analysis is performed for global, inter- and

intra-procedural control and data flow. A summary is also provided for

the whole program.

Some of the active static metrics are: statement, line, & _t counts,

cyclcmatic number, branch, definition-usepairandpathcount.

Scm_ of the active dynamic coverage metrics are: statement, branch

definition-use pair, p-uses, and c-uses coverage.

To get more help on execution options type: bgg -h

_bre ccmplete documentation is available in the form of users manual and

a paper describing the tool.

It is possible to customize the bggdriver to access some analysis

options which are not available in the default mode.

OPTIONS

There are four processors that can be controlled: bgg-shell,

bgg-bgc the graph generator, bgg-static the static analyzer,

bgg-dynamic the dynamic analyzer,

and

** bgg-shell options:

bgg-shell runs bgc, bgg-static and bgg-dynamic in default modes unless

otherwise is specified through options.

default option:

other options:

graph generation only

* file name.p file must be available

-x generate graph, static, and dynamic analysis

* file_name.p file must be available

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-14

-s static analysis only

* all graph files must be available

-d dynamic analysis only

* file_name.p.prcbe file n_st be available

* all graph files must be available

-a static and dynamic analysis only

* file name.p.probe file must be available

* all graph files must be available

-r both static and dynamic analysis is

performed on reduced (data-flow) graphs

-h help (this screen)

warning: filenames "tables", "llgenout", 'q)gctables" are reserved names

and will be deleted if they exist in the current directory

** bgg-bgc options:

usage: bgc [options]

required file: tables,
default :

options : -v

-prdef

-ppdef

-ppuse

-pgdef

-pguse

-pcdef
-f

-h

llgenout test.p or option -f

all -pxxx options are on.

print version and stop

turn off analysis of predefined functic_s

turn off analysis of parameter pseudo-deflnitions

turn off analysis of parameter pseudo-uses

turn off analysis of global pseudo-definitions

turn off analysis of global pseudo-uses

turn off analysis of constant pseudo-definitions

fname.p, where fname.p is source code

help (this screen)

** bgg-static options:

usage: dustatic [options] < bgctables

required file: bgctables as standard input

default: control-flowanalysis, iteration depth is one

options: -r for analysis use reduced graph; default:

graph

-v

-i

full control

print program version only

xx

set depth of loop iteration to xx; default is 1

-p fname

fname contains list of procedures or functions

by their ordinal number, one a line, which are NOT

to be processed during static analysis;

default is to process all procedures/functions

-h help (this screen

** bgg-dynamic options:

usage: dudynamic [options]

required files: probe, bgctables

default: control-flowanalysis

options: -r for analysis use reduced graph

-v print programversion only

-h help (this screen

NASA/NAG-1-983/Semi-Annual Relx)_ No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-9"2 4-15

BUGS

NOTE

This is a field testing release of bgg. Please remember that

bgg is a research and teaching tool still under development.

It contains some bugs _e know about, and probably many we do not

know about. So exercise care and check the results for consistency

and sense.

Please report all anomalies to

vouk@adm.csc.ncsu.edu

bgg will only take complete programs which do not take input directly

frcm the keyboard and output drectly to the screeen. All I/Ohas to be

indirect (via files).

bgg programs must have the (input, output) part.

Under VAX Ultrixbgg is very slow, so be patient. To start with, analyze

only very small code. Code to be analyzed must be a complete program.

NAS A/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV.DFM)/Mar-92 5-1

Appendix III:
An Empirical Evaluation of Consensus Voting and

Consensus Recovery Block Reliability in the Presence of
Failure Correlation*

(submitted to the Special Issue of Journal of Computer and Software Engineering, March 1992)

Mladen A. Vouk3,David F. McAUister 1, David E. Eckhardt 4, Kalhee Kim 1

Abstract

Reliability of fault-tolerant software system implementations based on Consensus Voting and
Consensus Recovery Block strategies is evaluated using a set of independently developed
functionally equivalent versions of an avionics application. The strategies are studied under
conditions of high inter-version failure correlation and with program versions of medium-to-high
reliability. Comparisons are made with classical N-Version Programming that uses Majority Voting,
and with Recovery Block strategies. The empirical behavior of the three schemes is found to be in
good agreement with theoretical analyses and expectations. Consensus Voting and Consensus
Recovery Block based systems are found to perform better and more uniformly than corresponding
traditional strategies, i.e. Recovery Block and N-Version Programming that uses Majority Voting.
This is the first experimental evaluation of the system reliability provided by Consensus Voting, and
the first experimental study of the reliability of Consensus Recovery Block systems composed of
more than three versions.

Key Words: Consensus Recovery Block, Consensus Voting, System Reliability, Software
Fault-Tolerance, Correlated Failures

1. Introduction

Redundancy can be used to provide fault-tolerance in software systems. Several independently

developed but functionally equivalent software versions axe combined in various ways in an attempt

to increase system reliability. Over the years simple majority voting and recovery block based

software fault-tolerance has been investigated by a number of researchers, both theoretically [e.g.,

Ran75, Avi77, Grn80, Eck85, Sco87, Deb88, Lit90] and experimentally [e.g., Sco84a,84b, Bis86,

Kni86, Shi88, Eck91]. However, studies of more advanced models such as Consensus Recovery

Block [e.g. Sco84a, Sco87, Deb88, Bel90], Community Error Recovery [e.g. Tso86, 87, Nic90],

Consensus Voting [McA90] or Acceptance Voting [Ath89, BeI90] are less frequent and mostly

theoretical in nature. One of the principal concerns with all redundancy based software fault-tolerance

*Research supported in part by NASA Grant No. NAG-I-983
3Department of Computer Science, North Carolina State University, Box 8206, Raleigh, NC 27695-8206
4NASA Langley Research Center, MS 478, Hampton, VA 23665

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 S-2

strategies is their performance in the presence of failure correlation among the versions comprising

the system.

In a recent study Eckhardt et al. _ck9 I] addressed the issue of reliability gains offered through

classical majority-based N-Version Programming using high reliability versions of an avionics

application under conditions of small-to-moderate inter-version failure dependence. In this paper we

discuss system reliability performance offered by more advanced fault-tolerance mechanisms under

more severe conditions. The primary goal of the present work is mutual comparison of different

experimental implementations of Consensus Recovery Block in the presence of inter-version failure

correlation, and a comparison of Consensus Voting and Consensus Recovery Block with more

traditional schemes such as N-Version Programming with Majority Voting. We report on the relative

reliability performance of Consensus /oting and Consensus Recovery Block in an environment

where theoretically expected effects could be easily observed, i.e., under the conditions of strong

inter-version failure coupling using medium-to-high reliability software versions of the same

avionics application as was employed in [Eck91]. To the best of our knowledge this study is the Fast

experimental evaluation of the Consensus Voting techniques, and the first experimental study of the

reliability of Consensus Recovery Block systems composed of more than three versions

In section 1 of the paper we provide an overview of software fault-tolerance techniques of interest,

in section 2 we discuss different voting approaches and the question of correlated failures, in section

3 we describe the experimental environment and present the results. Summary and conclusions are

given in section 4.

1.1 Recovery Block and N.Version Programming

One _f the earliest fault-tolerant software schemes is Recovery Block [e.g., Ran75, Deb86]. In

Recover Block independently developed functionally equivalent versions are executed in sequence

and the output is passed to an acceptance test. If the output of the first version fails the acceptance

test, then the second, or first backup, software version is executed and its output is checked by the

acceptance test, etc. In the case where the outputs of all versions are rejected the system fails. One

problem with this strategy is the sequential nature of the execution of versions. This was recently

addressed by [Bel91]. Another is finding a simple and highly reliable acceptance test which does not

involve the development of an additional software version. Another basic fault-tolerant software

strategy, N-version Programming [e.g., Avi77, Avi85], proposes parallel execdtion of

independently developed functionally equivalen t versions with adjudication of their outputs by a

voter. One problem with all strategies based on voting is that situations can arise where there is an

NASA/NAG-1-983/Semi-AnnualReports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-3

insufficient number of agreeing versions and voting fails simply because the voter cannot make a

decision.

1.2 Consensus Recovery Block

Scot et al. [Sco87] developed a hybrid software fault-tolerance model called Consensus

Recovery Block. The system executes independently developed functionally equivalent versions

on the same input in series or parallel. Then it attempts to vote on the returned results. If the voting

module cannot make a decision, the system reverts to Recovery Block. The strategy is depicted in

Figure 1, where the number of versions in the system is N, 1 - (x is the probability that a version

gives correct result, [31 is the probability that acceptance test _ a correct result, _2 is the

probability that acceptance test _ an incorrect result. In general, Consensus Recovery Block

offers system reliability superior to that provided by N-Version Programming [Sco87, Belg0].

However, Consensus Recovery Block, like N-Version Programming does not resolve the problem

of a voter which returns a wrong answer because several versions produce identical-and-wrong

answers or there is not a majority as might be the case when there are multiple correct outputs.

_ 21Nl

Lvor-,on
oc . _ /" correct result

wrong result _ 1-¢x

(vo,.)
, cannot decide

/ _ _ to acceptance test)

accept _a.,.=ntn nc_db

(success: correct result (-'- T-e=t"-'_
failure: wrong result) _]

success-- I . ".
(accept correct result) [reject wrong result

errors
reject correct result _I

accept wrong result _2

Figure 1. Consensus Re,coveD, Block model.

NASA/NAG-1-983/Semi-AnnualReports No. 5.0&6.0/NCSU.CSC.(MAV.DF1V0/Mar-92 5_4

2. Adjudication Strategies

2.1 Majority and 2-out-of-N Voting

In an m-out-of-N fault-tolerant software system the number of versions is N, and m is the agreement

number, or the number of matching outputs which the adjudication algorithm (e.g. voting) requires

for system success [e.g. Tri82, Eck85]. In the past N was rarely larger than 3, and m was
N+I FN+ 11

traditionally chosen as T for odd m. In general, in Majority Voting, m = "T i, where r -1

denotes the ceiling function. Scott et al. [Sco87] showed that, if the output space is large, and true

statistical independence of version failures can be assumed, there is no need to choose m > 2

regardless of the size of N, although larger m values offer additional benefits. We use the term

2-out-of-N Voting for the case where agreement number is m=2. In this experiment we do not

have statistical independence of version failures. Hence, this voting technique is used only when

showing upperbounds for reliabilities of the systems. In a model based on software diversity and a

voting strategy there is a difference between correcmess and agreement. McAllister et al. IMcA90]

distinguish between agreement and correcmess and develop and evaluate an adaptive voting strategy

called Consensus Voting. This strategy is particularly effective in small output spaces because it

automatically adjusts the voting to the changes in the effective output space cardinality. They show

that for m>2 the majority voting strategy provides lowerbound on the reliability provided by

Consensus Voting, and 2-out-of-N upperbound.

2.2 Consensus Voting

The theory of Consensus Voting is given in [McA90]. In Consensus Voting the voter uses the

following algorithm to select the "correct" answer:.

N+I
If there is a majority agreement (m > [32_], N>I) then this answer is chosen as the " correct"

answer.

- Otherwise, if there is a unique maximum agreement, but this number of agreeing versions is less

17N+l? l
than l T _, then this answer is chosen as the "correct" one.

Otherwise, if there is a tie in the maximum agreement number from several output groups then
- if Consensus Voting is used in N-Version Programming one group is chosen at random and

the answer associated with this group is chosen as the "correct" one.
- else if Consensus Voting is used in Consensus Recovery Block all groups are subjected to an

acceptance test which is then used to choose the "correct" output.

In [McA90] it is shown that the strategy is equivalent to Majority Voting when the output space

cardinality is 2, and to 2-out-of-N voting when the output space cardinality tends to infinity provided

NASA/NAG-1-983/Semi-AnnualReports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-5

the agreement number is not less than 2. It is also proved that, in general, the boundary probability
• 1

below which the system rehability begins to deteriorate as more versions are added is r' where r is

the cardinality of the output space.

2.3 Coincident Failures and Inter-Version Failure Correlation

When two or more functionally equivalent software components fail on the same input case we say

that a coincident failure has occurred. When two or more versions give the same incorrect response,

to a given tolerance, we say that an identical-and-wrong answer was obtained. If measured

probability of the coincident version failures is significantly different from what would be expected

by chance, assuming failure independence model, then we say that the observed version failures are

correlated or dependent [Tri82, Eck85, Litg0].

Experiments have shown that inter-version failure dependence among independently developed

functionally equivalent versions may not be negligible in the context of current software development

and testing strategies [e.g., Sco84a, Kni86, EclO1]. There are theoretical models of the classical

majority based N-Version Programming model which incorporate inter-version failure dependence

[e.g., Eck85, Lit90]. However, most of the theory for advanced software fault-tolerance strategies is

derived under the assumption of inter-version failure independence, and failure independence of

acceptance tests with respect to versions and each other (if more than one acceptance test is used).

Still, the behavior of the strategies in the presence of failure correlation can be deduced from these

simple models by extrapolation from their behavior in extreme situations. Therefore, it is interesting

to see if the effects and special events that can be anticipated from analytical considerations can

actually be observed in real multiversion software.

For example, in the case of implementations involving voting, presence of correlated failures

produces an effect which is usually equivalent to either a reduction, or an increase in the average

cardinality of the space in which voting takes place. An increased probability of coincident but

different incorrect answers will tend to increase the average number of distinct responses offered to a

voter for an input, while an increased probability of coincident identical-and-wrong failures will tend

to decrease the voting space from what would be expected based on the cardinality of the application

output space and version reliabilities (assuming versions are statistically independenO. In a model

based on failure independence the effects can be simulated, at least in part, through reduction or

increase in the model output space size.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5_6

To see this consider the following. Assume that all individual version failure probabilities in an

N-tuple are mutually independent [Tri82], have identical failure probability (l-p) over the usage (tes0

distribution, and have the same probability of occurrence of each program output failure state given

by , where: r is the size of the l_'ogram output space, there is a unique success state j--l, and there

are r-1 failure states, j=2,..,r. When r=2 (binary output space) all failures, and what is more

important all coincident failures of the N-tuple versions, result in identical-and-wrong answers. On

the other hand, under the above assumptions a large value of r translates into low probability that two

incorrect answers are identical (in the analytical and simulation examples given later in this paper an

"r = infinity" implies that the probability of obtaining identical-and-wrong answers is zero). This, in

turn, implies higher probability that responses from coincidentaUy failing versions are different, and

also increases the avera_ size of the voting space when coincident failures occur. Of course, the

voting space size is bounded by the number of versions in the N-tuple. An increase in the number of

coincident version failures can be simulated, in part, by reduction in the value of p which shifts the

peak of envelope of the independent coincident failures profde closer to N. However, in general,

models based on the assumption of failure independence do not capture strong non-uniform failure

coupling that can occur between two or more versions in practice (e.g. sharp spikes seen in the

experimental trace in Figure 3) because the causes of the coupling are different (e.g. identical-and-

wrong responses are the result of a fault rather than a basic change in the output space of the

problem, although the effect may be the same).

An added dimension is failure correlation between an acceptance test and the N-tuple versions, or

lack of mutual independence when two or more acceptance tests are used. The effects can, again only

in part, be simulated by lowering reliability of the model acceptance test.

Nevertheless, we would expect that many of the effects observed in the experiments conducted in a

high inter-version correlation environment would in the simple theoretical models correspond to

small output space (r) and low p effects. Similarly, we would expect that implementations composed

of versions that exhibit low mutual inter-version failure correlation would exhibit many

characteristics that correspond to model computations based on large r values.

3. Empirical Results

In this section we discuss experimental data on reliability of N-Version Programming systems that

use Consensus Voting (NVP-CV), and on Consensus Recovery Block systems that use either

Majority Voting (CRB-MV), or Consensus Voting (CRB-CV). Consensus Voting and Consensus

NASA/NAG-I-983/Semi-AnnualReportsNo. 5.0&6.0/NCSU.CSC.('MAV.DFM)/Mar-92 5-7

Recovery Block are compared with N-Version Programming that uses Majority Voting (NVP-MV)

and with Recovery Block (RB).

3.1 Experimental Environment

Experimental results are based on a pool of twenty independently developed functionally equivalent

programs developed in a large-scale multiversion software experiment. We used the program

versions in the state they were immediately after the unit development phase [Ke188], but befo_ they

underwent an independent validation (or acceptance)phase of the experiment [Eck91]. This was

done to keep the failure probability of individual versions relatively high (and failures easier to

observe), and to retain a considerable number of faults that exhibit mutual failure correlation in order

to high-light correlation based effects. The nature of the faults found in the versions is discussed in

[Vou90].

For the study we generated subsets of program N-tuples with: 1) similar average 5 N-tuple reliability,

and 2) a range of average N-tuple reliabilities. We use the average N-tuple reliability to focus on the

behavior of a particular N-tuple instead of the population (pool) from which it was drawn, and to

indicate approximate reliability of corresponding mutually independent versions. In this paper we

report on 3, 5 and 7 version fault-tolerant software systems. The subset selection process is

described in Appendix I.

In conducting our experiments we considered a number of input profiles and different combinations

of versions and output variables. Failure rate estimates based on the three most critical output

variables (out of 63 monitored) are shown in Table 1. Two test suites each containing 500 uniform

random input test cases were used in all estimates discussed in this paper. The sample size is

sufficient for the version and N-tuple reliability ranges on which we report here. One suite, which we

call Estimate-I, was used to estimates of individual version failure rates (probabilities), N-tuple

reliabilities, select acceptance test versions, select sample N-tuple combinations, and compute

expected "independent model" response. The other test suite, Estimate-IL was used to investigate the

actual behavior of N-tuple systems based on different voting and fault-tolerance su'ategies. Recovery

Block, and Consensus Recovery Block studies require an acceptance test. We used one of the

developed versions as an acceptance test. This provided correlation not only among versions, but

5Average N-tuple reliability estimate is defined as _ = i=l N' and the corresl_nding estimate of the standard

deviation of the sample as _ ffi 1 . , where 0i ffi jffil is estimated reliability of version i over

the test suite composed of k test cases, s_(j)is a score function equal to 1 when version succeeds and 0 when it fails
on test case j, and 1- 0i is the estimated version failure probability.

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV.DFM)/Mar-92 5-8

also between the acceptance test and the versions. Acceptance test versions were selected f'wst, then

N-tuples were drawrr from the subpool of remaining versions. The fault-tolerant software algorithms

of interest were invoked for each test case. The outcome was compared with the correct answer

obtained from a "golden" program [Ke188, Voug0] and the frequency of successes and failures for

each strategy was recorded.

Table 1. Version failure rates.

Version Failure Rate*
Estimate I Estimate II

1 0.58 0.59
2 0.07 0.07
3 0.13 0.11
4 0.07 0.06
5 0.11 0.10
6 0.63 0.64
7 0.07 0.06
8 0.35 0.36
9 0.40 0.39

10 0.004 0.000
11 0.09 0.10
12 0.58 0.59
13 0.12 0.12
14 0.37 0.38
15 0.58 0.59
16 0.58 0.59
17 0.10 0.09
18 0.004 0.006
19 0.58 0.59
20 0.34 0.33

(*) Based on the 3 most important output variables,
"best.acceleration". Each column was obtained on the basis of a
separate set of 500 random cases.

NAS A/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFI_/Mar-92 5-9

t 1200 - Coincident Failure Profile

I 8o • for a 17-Verslon System |

,so t (excluded are versiona #3, #17, & #20) !
14o "t_ Independent Fellurae Modal I

_. 1 O0

"_ eo
IL

60

40

20

0
0 1 2 3 4 5 iS 7 8 9 10 11 12 13 14 15 16 17

Number of Versions that Fall Coincidentally

Figure 2. Example of a joint coincident failure profile.

Table 2. Frequency of empirical coincident identical-and-wrong (lAW) events over 500 test cases
for the set of 17 versions shown in Figure 2. The span is the number of versions that coincidentaUy

returned a lAW answer.

The Span of IAW Events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Frequency

2049 164 1 16 1 1 2 15 0 0 0 0 0 0 0 0 0

The failure correlation properties of the versions can be deduced from their joint coincident failure

profiles, and the corresponding lAW response profiles. For example, Figure 2 shows the profile for

a 17 version subset (three versions selected to act as acceptance tests are not in the set). The abscissa

represents the number of versions that fail coincidentaUy, and the ordinate is the frequency of the

event over the 500 samples. Also shown is the expected frequency for the model based on

independent failures, or the "binomial" model [Tri82]. The deviation from the expected

"independent" profde is obvious. For instance, we see that the frequency of the event where 9

versions fail coincidentaUy is expected to be about 10. In reality, we observed about 100 such

events. Table 2 summarizes the corresponding empirical frequency of coincident IAW responses.

For example, in 500 tries there were 15 events where 8 versions coincidentally returned an answer

which was wrong yet identical within the tolerance used to compare the three most critical (real)

NASA/NAG-1-983/Semi-Annual Relxa_ No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-10

variables. Both, Figure 2 and Table 2, are strong indicators of a high degree of _nter-version failure

dependence in the versic t we used.

3.2 Consensus Voting

Theory predicts that Consensus Voting is always either as reliable, or more reliable, than Majority

Voting. In binary output space Consensus Voting reduces to Majority Voting and cannot improve on

it. But for r > 2 Consensus Voting is expected to offer reliability higher than Majority Voting. Theory

also predicts that in N-Version Programming systems composed of versions of considerably

different reliabilities both Majority Voting and Consensus Voting would have difficulty providing

reliability that exceeded that of the most reliable, or "best", component although Consensus Voting

would still perform better than Majority Voting [McA90].

Figures 3 and 4 illustrate the observed relationship between N-Version Programming ,th

Consensus Voting and Majority Voting system successes over a range of average N-tuple reliabilities

for 3-version and 7-version systems respectively. The "ragged" look of the experimental traces is

partly due to the small sample (500 test cases), but also due to the presence of very highly correlated

failures. The experimental behavior is in good agreement with the trends indicated by the theoretical

Consensus Voting model based on failure independence.

g
,oo4B°,, i """c"\ I!)d I

NVP-MV

300
Or)

2oo
0.4 0.5 0.S 0.7 0.8 0.9 1.0

Average N-Tuple Reliability

Figure 3. System reliability by voting (N=3).

• NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-11

O
e-

O"

L-

I.I.

O
¢.)
,-,1

5O0

400

300

10

O_ul a

Best

Version i
NVP-CV

NVP-MV

EXPERIMENTAL
N=7

N-Tuple Subset D

200 , ,
0.5 0.6 0.7 0.8 0.9

Average N-Tuple Reliability

Figure 4.System reliabilityby voting('N=7).

For instance, we see that for N=3, N-Version Programming has difficulty competing with the "best"

version when the average N-tuple reliability is low. Note that the "best" version was not pre-selected

based on Estimate-I data, but is the N-tuple version which exhibits the smallest number of failures

during the actual evaluation run (Estimate-H). The reason N-Version Programming has difficulty

competing with the "best" version is that the selected N-tuples of low average reliability are

composed of versions which are not "balanced", i.e. their reliabilities are very different and therefore

variance of the average N-tuple reliability is large. As average N-tuple reliability increases N-Version

Programming performance approaches, or exceeds, that of the "best" version. In part, this is because

N-tuples become more "balanced" since the number of higher reliability versions in the subpool from

which versions are selected is limited. This effect is further discussed in the text related to Table 3

and Figure 7. We also see that N > 3 improves performance of Consensus Voting more than it does

that of Majority Voting. This is to a large extent because for N>3 plurality decisions become

possible, i.e. in situations where there is a unique maximum of identical outputs the output

corresponding to this maximum is selected as the correct answer even though it is not in majority.

Table 3 gives examples of the detailed behavior of selected individual N-tuples. In the table we first

show the average reliability of the N-tuple (Avg. Rel.), its standard deviation (Std. Dev.), and the

reliability of the acceptance test used in strategies that need it (AT Rel.). The table then shows the

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-12

average conditional voter decision space (CD-Space), and its standard deviation of the sample.

Average conditional-voter decision space is defined as the average size of the space (i.e. the number

of available unique answers) in which the voter makes decisions given that at least one of the

versions has failed. We use CD-Space to focus on the behavior of the voters when failures are

present. Of course, the maximum voter decision space for a single test case is N. We then show the

cot_nt of the n_mber of times the "best" version in an N-tuple was correct (Best Version), and the

success frequency under each of the investigated fault-tolerance strategies. The best response is

underlined with a full line, while the second best with a wavy line.

Also shown in thetableisthe breakdown of thedecisionprocessforN-Version Programming with

Consensus Voting (NVP-CV), i.e.the frequency of sub-events that yielded the consensus

decision.We recorded the number of times consensus was a successfulmajority (S-Majority),an

unsuccessfulmajority(F-Majority),a successfulplurality(S-Plurality),an unsuccessfulplurality

(F-Plurality),a successful(S-Random) and an unsuccessful(F-Random) attempt atbreaking a tie

by random selection,and a failureby flat(F-Fiat)by which we mean a situationwhere a tieexisted

but allthegroups of outputsinvolvedcontainedwrong answers so any choice made tobreak thetie

led to failure.The sum of S-Majority,S-Pluralityand S-Random comprises consensus voting

successtotal,while the sum ofF-Majority,F-Plurality,F-Random and F-Fiat isequal tothe total

number of cases where votingfailed(F-Total).

Columns 1 and 2 of Table 3 show the resultsfor two unbalanced low reliability3-tuples,while

column 3 shows theresultsfora wcU balanced 3-tupleofhigherreliability.We see thatinthe former

casethe highestreliabilityisthatof thebestversionwhile in thelatterN-Version Programming with

Consensus Voting offersthe bestresult.An examination of Consensus Voting sub-eventsshows that

in the case of 3-tuplesmost of the voting successcame from majority agreements. The restof the

cases resultedin failuresbecause allthreeversions returned diffexentresults.Consensus Voting

attcmpts to salvage thissituation.For instance,for the 3-tuplein column 1 Consensus Voting

attemptedto recover293 times by random selectionof one of the outputs.As would be expected,it

succeeded about 30% of the time.Notice thatincolumn 3 N-Version Programming with Consensus

Voting ismore successfulthan Consensus Recovery Block with Consensus Voting. This isbecause

N-Version Programming with Consensus Voting five times successfullybroke tie by random

selection,while atthe sarnctime Consensus Recovery Block with Consensus Voting unsucccssfuUy

acceptancetcstcdthe answers.

Columns 4-11 illustratebehavior of 5-tuples,and columns 12-15 behavior of 7-tuples.When N > 3

advantages of Consensus Voting over Majority Voting increase because pluralityvote is now

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-13

possible.One problem thatN-Version Programming with Majority Voting does not solve arc the

small space situationswhere the vote failsbecause a voter is offered more than two groups of

answers from which to selectthe "correct"output,but thereisno majorityso votingcannot returna

decision.The events are those where thereisno agreement majority but one of the outputs occurs

more fTcqucntlythan any other,and those where there isa tiebetween the maximum number of

outputsintwo or more groups of outputs.For example, considerthe 5-versionsystem from column

4 where N-Version Programming with Consensus Voting is more successful than N-Version

Programming with Majority Voting.ColTCCtmajoritywas availableinonly 321 cases,while in 146

instances the correct output was chosen by plurality.In comparison, the 3-version N-Version

Programming with Consensus Voting system from column 1 ismore successfulthan N-Version

Programming with MajorityVoting primarilybecause of therandom selectionprocess(S-Random).

Table 3. Examples of thefrequency of votingand recovery events.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N-tuDle Structure

Velsion8 6,10,16 8,9,18 7,11,13 2,4,8, 6,9,12 4,7,8 1,3,5 5,7,11 4,5,7 3,5,10 4,5,8 2,3,5 2,3,4 1,3,8, 5,_8

12,16 13,14 11,13 B,20 13,20 8,11 11,17 12,20 7,11, 9,]2, 9,11, 10,12,

1% 20 13,20 15,16 16,20

um.Xth

Avg._l. 0.S 0._ 0.Z 0._ 0._ 0._ 0._ 0.m 0.m 0._ 0.n 0._ o.m o.e o._

S_ _¥. 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ O.Z 0._ 0._ 0._ 0._

AT_I. 0._ 0._ 0._ o.m 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._ 0._

CD-_Jce 2._ 2.59 2._ 2._ 4._ 2_9 2,_ 2._ 2._ 2._ 2._ 2._ 2._ 5._ 4._

S_ _¥. 0._ 0.49 0._ 1._ o.z 0._ o.M 0._ 0._ 0._ 0._ 1._ 0._ 1._ 1._

snecan E_aancv

BestVemion -_ _Z ,m 4m e9 4e 4s 4m 469 _ ._. ,tee ,tee ._3_ ma

NVP-MV _ 341 486 321 ms 4_ 405 4_ 454 4_ 430 _ 455 2m m2

NVP-CV _0 _4 4m ._. _so 4m _ 4ss _4 am 4sv 4m 4m 4_ 464

RB 443 _e 443 4s4 454 454 441 463 A'_ 4.._ _s ._ _ _,n

CRB-MV .@,4 ._ .,_ A@ 46z 4m _ _m ,r_ .4_ ._7 ,ms _ 4.s4 5"z_

CRB-CV .A_,4 .A_ ._ ._. .A_s :W. 4_ ._t_ _ 4._ ._7 4m A_t4 433

Suedes Fr_en_v of Consensus Vot:in_ SuI_-Ewmnta

S-MaJority me 3,11 4e4 32z ms 4ee ,m 4e e4 ,re 430 4e 4rm 2m m2

F-M_Jodty _ 32 0 z9 0 0 m 0 m 0 19 0 0 0 0

S-Plurality o o o z_ 42 23 e ze _4 z_ 23 z_ 29 z4e zvt

F-Pitrality 0 0 0 0 2 Z4 0 0 0 0 o _s Z4 4O m
S-Ran4bm I04 43 5 0 23 2 1 9 6 4 4 0 1 10 _i

F-Randbm lm u 9 0 _ 3 1 5 8 14 10 3 1 11 16

F-F[ml. 0 0 0 14 2B 0 14 0 0 0 14 0 0 13 0

F-Total zso ns 9 33 _o z_ m 5 x 14 (3 zs ts e

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6,0/NCSU.CSC.(MAV,DFI_/Mar-92 5-14

Theoretical relations _ between voter decision space cardinality and voting strategies assuming

failure independence is shown in Figure 5 for a simulated 5-version system composed of mutually

independent versions with average N-tuple reliability of 0.856. We plot system reliability of N-

Version Programming with Consensus Voting and N-Version Programming with Majority Voting

against the average conditional voter decision space. The average conditional voter decision space

was calculated as the mean number of distinct results available to the voter during events where at

least one of the 5-tuple versions has failed. The illustrated variation in the average conditional voter

decision space (v) was obtained by varying the output space cardinality from _2 to r=-infinity. This

resulted in the variation in v in the range 2 < v < 2.35. Also shown is the N-Version Programming

2-out-of-N boundary (r = infinity).

m
m
m

d_
t_
es
O
It_

11.

u)
to

O
O

¢/)

(¢
E

m

UJ

1.0o

0.90

0.97
2.0

Simulation /

N = 5 Tkeoretlcel Upperbound

Simulation Sample = 100,000 (r, Infl,_)
Average Veraion Reliability = 0.85

NVP-CV

2.1 2.2 2.3

Average Conditional Voter Decision Space

2.4

Figure 5. Influence of voter space size on different voting strategies.

Theory predicts that as the decision space increases (v > 2) the difference between the reliability of

the systems using N-Version Programming with Consensus Voting and systems using N-Version

Programming with Majority Voting increases in favor of N-Version Programming with Consensus

6Reliability of individual versions ranged between about 0.78 and 0.91, standard deviation of the sample was 0.061.

• , NASA/NAG-1-983/Semi-Annual Reports No, 5.0&6.0/NCSU.CSC.(MAV,DFIV0/Mar-92 5-15

Voting [McA90]. Figure 6 illustrates the observed relationship between system success frequency

and the average conditional voter decision space for a subset of 5-version systems with N-tuple

reliability close to 0.85. Note that in Figure 6 the variation in the voter decision space size is caused

by the variation in the probability of obtaining coincident but different incorrect answers. The

observed behavior is in good general agreement with the trend shown in Figure 5 except that in the

experiment, as the decision space increases, the reliability of N-Version Programming with

Consensus Voting increases at a slower rate and reliability of N-Version Programming with Majority

Voting appears to decrease.

500

480

g 460
_t

IJ.

u_ 440

0
0
:3 420

03

EXPERIMENTAL NV P-CV

N=5 A/,

" .' "4 "-,, .:"..:'".+, ,

% .,o , ; °°+
• o_* |## ,=_ •

%° t *+_NVP-MV

Average 5-tuple Reliability
400 , I

2.1 2.3 2.5

Average Conditional Voter Decision

Figure 6. Voter behavior in small decision space.

Space

v

In practice, failure probabilities of individual versions have a nonzero standard deviation about

N-tuple mean. Small scatter may, up to a point, appear to increase average reliability obtained by

voting because there may be enough versions on the "high" side of the mean to form a correct

agreement number more often than would be expected from a set where all versions have the same

reliability. But when the scatter is excessive the system reliability can actually be lower than the

reliability of one or more of its best component versions [McA90].

This effect is illustrated in Figure 7 (independent model simulation; 100,000 cases for each point

shown). In the figure we plot reliability of N-Version Programming with Consensus Voting and

reliability of N-Version Programming with Majority Voting against the standard deviation of the

N-tuple reliability (the mean value being constant and e_qual to 0.95). Also shown is the reliability of

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-t6

the bestsingleversionobtained from thesimulation.The featureto noteisthevery sharp stepin the

bestversionreliabilityonce some criticalvalue of the standarddeviationof the sample isexceeded

(about0.03 in thisexample). The effectcan bc seen for some of the tuplesshown in Table 3 (e.g.

columns I,2, 4, 10, 11, and 15).Low average reliabilitysystems with a high standard deviation

about the mean tendtoperform worse thanthe "best"version.

1.0000

0.9995

0.9990

System 0.9985
Reliability

0.9980

0.9975

.vp-cv

4e_e,.__e._..e.__e..,.,.jk--.ey/r<l Reliability of th_
NVP-MV

Simulatior

Best Version

I Average 5-Tu0le !
Reliability p ,, 0.95

Cardinslity r ,, 4

0.9970 I I I i t I t , I

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Standard Deviation of N-Tuple Reliability

Figure 7. System reliability by Consensus Voting for 5'version systems vs. standard deviation of

5-tuplereliability.The probabilityof each j=2,..,rfailurestateisr_l,where _ isthe average 5-topic

reliability.

A general conclusion regarding Consensus Voting is experimental results indicate that N-Version

Programming with Consensus Voting appears to behave like its models based on failure

independence predict. The advantage of Consensus Voting is that it is more stable than Majority

Voting. It always offers reliability at least equivalent to Majority Voting, and it performs far better

than Majority Voting when average N-tuple reliability is low or the average decision space in which

voters work is large. When reliability is the issue N-Version Programming with Consensus Voting

should be preferred to N-Version Programming with Majority Voting. A practical disadvantage of

Consensus Voting may be the added complexity of the voting algorithm (or hardware) since the

strategy requires multiple comparisons and random number generation.

3.3 Consensus Recovery Block

Theory predicts that in an ideal situation (version failure independence, zero probability for

identical-and-wrong responses, perfect voter) Consensus Recovery Block is always superior to

N-Version Programming (given the same version reliabilities and the same voting strategy) or

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mat-92 5-17

Recovery Blc, ck (given the same version and acceptance test reliabilities) [Sco87, Bel90]. This is

illustrated in Figure 8 using 2-out-of-N voting. It is interesting to note the cross-over point between

Recovery Block and N-Version Programming caused by the finite reliability of the Recovery Block

acceptance test (1-13 = 0.9). Of course, the behavior is modified when different voting strategies are

used or if inter-version failure correlation is substantial.

Given the same voting strategy for Consensus Recovery Block and N-Version Programming, in the

presence of very high inter-version failure correlation we would expect Consensus Recovery Block

to do better than N-Version Programming only in situations where coincidentally failing versions

return different results. We would not expect from Consensus Recovery Block more than to match

N-Version Programming in situations where the probability of identical-and-wrong answers is very

high since many decisions would be then made in a very small voting space and the Consensus

Recovery Block acceptance test would be invoked only very infrequently.

The experimental results are shown in Figures 9, 10 and 11. The number of times that the result

provided by a strategy was correct is plotted against the average N-tuple reliability. The same

acceptance test version was used by Consensus Recovery Block and Recovery Block. From

Figure 9 we see that for N=3 Consensus Recovery Block with Majority Voting provides reliability

equal to or larger than the reliability by N-Version Programming with Majority Voting (given

the same versions). The behavior of the same 5-version systems using Consensus Voting instead of

Majority Voting is shown in Figures 10 and 11. From Figure 10a we see that with Consensus

Voting N-Version Programming becomes almost as good as Consensus Recovery Block at lower

N-tuple reliabilities than is the case with Majority Voting. Figure 10b shows that Consensus

Recovery Block with Consensus Voting is quite successful in competing with the "best" version. We

also see that the expected cross-over point between N-Version Programming and Recovery Block is

present, and that reliability of Consensus Recovery Block with Consensus, or Majority, Voting is

usually at least as good as that by Recovery Block (Figures 9, 10b). However, it must be noted that

given a sufficiendy reliable acceptance test, or binary output space, or very high inter-version failure

correlation, all the schemes that vote may have difficulty competing with Recovery Block. Also

observed were two less obvious events described below. Both stem from the difference between the

way Consensus Voting is implemented with N-Version Programming and the way it is implemented

when used in Consensus Recovery Block.

Although Consensus Recovery Block with Consensus Voting is a more advanced strategy than

N-Version Programming with Consensus Voting, and is usually more reliable than N-Version

Programming with Consensus Voting, there are situations where the reverse is true. Because

NASA/NAG- 1-983/Semi-Annual Reports No. 5.0&6._NCSU.CSC.(MAV,DFM)/Mar-92 5-18

Consensus Recovery Block wi_ Consensus Voting employs the acceptance test to resolve situations

where there is no ph_rality while N-Version Programming with Consensus Voting uses random tie

breaking, occasionally N-Version Programming with Consensus Voting may be marginally more

reliable than Consensus Recovery Block with Consensus Voting. This will happen when the

acceptance test reliability is low, or when acceptance test and program failures are

identical-and-wrong. Examples of this behavior can be seen in columns 3, 6, 7, 8 and 13 of Table 3.

The difference in favor of N-Version Programming with Consensus Voting is often exactly equal to

S-Random.

o.] c,. (_.0.,..,.,v.,., _
°"! t

o.o4 "'°0"", "'*°' /t
o-t ..-"" F

_ °"31 ," I"
092-.] _ical (Independent Model) [

.,'" p_=_2=_=o.1
[:.

o,eo /0.80 o._5 o.;o o._6 ,.oo

Version Reliability

Figure 8. System reliability for different software fault tolerance schemes with 2-out-of-N voting,

N -- 3, and 131 = 132= 13= 0.1 (see Figure 1).

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-19

- CRB-MV

" 5oo o...o, p.. \ o o. J_.._... a.o'9
i "., / ",_\ ;',._,.". .,"/,__ /,-_I

= :_.-.....-.......
u. 4oo Best I I _ I Recovery Block

Version] / V

o= EXPERIMENTAL
.300 /_ / .v,...v N=3

/ _ / N-Tuple Subset a
AT Reliability = 0.91

200 , = = , ' I
0.45 0.55 0.65 0.75 0.85 0.95

Average N-Tuple Reliability

Figure 9. Consensus Recovery Block system reliability with majority voting.

.0O_ 480

4°0_.-A_.--_9z'''_'....../'"'"..

LL 420

u_ 4o0 l\ Recovery Block EXPERIMENTAL

_ ==o=o I\ N=5
I _ _

,) MVD_PV N-Tuple Subset C
r_ 34o P_vv-uv AT Reliability = 0.91

320 I J ,
0.55 0.65 0.75 0.85 0.95

Average N-Tuple Reliability
Figure lOa. Consensus Recovery Block with Consensus Voting compared with N-Version

Progl'amming with Consensus Voting and Recovery Block.

NASA/NAG-l-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFI_/Max-92 5-20

520

_. 5oo

_..o
_= 46o

8
o 4_
¢n

420

4OO

Best V_ion CRB-CV

'.. It'.. ;i_'.. ;_ / I _, / I ', _ ",._
: i I: ;/1[; _ ; _ i I i , .jr ", Ire :

AL/N = 5
Recovery Block N-Tuple Subset C

,... , --. , A...I" Reli.bility
0,91

0,55 0.65 0.75 0.85 0.95

Average N-Tuple Reliability
Figure 10b. Comparison of Consensus Recovery Block with Consensus Voting with Recovery

Block and best version successes.

1t A/c""cc....v I I J / ! t II; "3 I

1 i \[/it - ! EXPERIMENTAL I

r_ .r N-Tuple . Subset C [

,,o.t c....,v , ,...!.:,,,,, : o.,_
0.55 0.65 0.75 0.85 0.95

Average N-Tuple Reliability
Figure ll. Comparison of Consensus Recovery Block with majority voting and Consensus

Recovery Block with Consensus Voting strategies.

NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV_DFM)/Mar-92 5-21

Similarly, Consensus Recovery Block with Consensus ¥oti,.g is usually more reliable than

Consensus Recovery Block with Majority Voting. However, if the number of agreeing versions is

less than the majority sometimes the reverse may be true. For instance, if there is no majority then

Majority Voting will fail and pass the decision to the acceptance test (which may succeed), while

Consensus Voting will vote and, if the plurality is incorrect because of identical and wrong answers,

Consensus Voting may return an incorrect answer. An example can be found in Figure 11 and in

columns 5, 12, 14 and 15 of Table 3.

A general conclusion regarding the observed Consensus Recovery Block implementations is that the

strategy appears to be quite robust in the presence of high inter-version correlation, and that the

behavior is in good agreement with analytical considerations based on models that make the

assumption of failure independence [Sco87, Bel90]. Of course, the exact behavior of a particular

system is more difficult to predict since correlation effects are not part of the models. An advantage

of Consensus Recovery Block with Majority Voting is that the algorithm is far more stable and is

almost always more reliable than N-Version Programming with Majority Voting. But, the advantage

of using a more sophisticated voting strategy such as Consensus Voting, may be marginal since the

Consensus Recovery Block version of the Consensus Voting algorithm relies on the acceptance test

to resolve ties. However, Consensus Voting version of CRB may be a better choice in high

correlation situations where the acceptance test is of poor quality. In addition, Consensus Recovery

Block will perform poorly in all situations where the voter is likely to select a set of identical-and-

wrong responses as the correct answer (binary voting space). To counteract this we could either use

a different mechanism such as the Acceptance Voting algorithm or an even more complex hybrid

mechanism which would run Consensus Recovery Block and Acceptance Voting in parallel and

adjudicate series-averaged responses from the two [Ath89, Bel90]. A general disadvantage of all

hybrid strategies is an increased complexity of the fault-tolerance mechanism.

4. Summary and Conclusions

In this paper we presented the fh'st experimental evaluation of Consensus Voting, and an

experimental evaluation of the Consensus Recovery Block scheme. The evaluations were performed

under conditions of high inter-version failure correlation and version reliability in the range between

about 0.5 and 0.99.

The experimental results conf'm,a the superior reliability performance of Consensus Voting over

Majority Voting. They also conf'u'rn that Consensus Recovery Block strategy outperforms simple

N'Version Programming and is very robust in the presence of inter-version failure correlation. In

NASA/NAG-1-983/Sem{-Annual Reports No. 5.0_6.0/NCSU.CSC.(MAV)DFM)/Mar-92 5-22 .

general, the experimental results agree very well with the behavior expected on the bat:is of analytical

studies of the hybrid models. Of course, behavior of an individual practical system can deviate

considerably from that based on its theoretical model average, and so considerable caution is needed

when predicting behavior of practical fault-tolerant software systems particularly if presence of

inter-version failure correlation is suspected.

[Ath89]

[Avi77]

[Avi85]

[Bel90]

[Bel91]

[Bis86]

[Deb86]

[Deb88]

[Eck85]

[Eck91]

[GrnS0]

[Ke188]

[Kni86]

[Lap84]

[Lit87]

[Lit90]

[McA90]

References

A.M. Athavale, "Performance Evaluation of Hybrid Voting Schemes," M.S. Thesis,
North Carolina State University, Department of Computer Science, 1989.
A. Avizienis and L. Chen, "On the Implementation of N-version Programming for
Software Fault-Tolerance During Program Execution", Proe. COMPSAC 77, 149-155,
1977.

A. Avizienis, '"rhe N-Version Approach to Fault-Tolerant Software," IEEE Trans. Soft.
Eng.,Vol. SE-11 (12), 1491-1501, 1985.

F. Belli and P. Jedrzejowicz, "Fault-Tolerant Programs and Their Reliability," IEEE
Trans. Rel., Vol. 29(2), 184-192, 1990.

F. Belli and P. Jedrzejowicz, "Comparative Analysis of Concurrent Fault-Tolerance
Techniques for Real-Time Applications", Proc. Intl. Symposium on Software Reliability
Engineering, Austin, TX, pp., 1991.

P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dalai, and J. Lahti, "PODS--A
Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
A.K. Deb, and A.L. Goel, "Model for Execution Time Behavior of a Recovery Block,",
Proc. COMPSAC 86, 497-502, 1986.

A.K. Deb, "Stochastic Modelling for Execution Time and Reliability of Fault-Tolerant
Programs Using Recovery Block and N-Version Schemes," Ph.D. Thesis, Syracuse
University, 1988.

D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multi-version
Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-11(12),
1511-1517, 1985.

D.E. Eckhardt, A.K. Caglayan, J.P.J. Kelly, J.C. Knight, L.D. Lee, D.F. McAUister,
and M.A. Vouk, "An Experimental Evaluation of Software Redundancy as a Strategy for
Improving Reliability," IEEE Trans. Soft. Eng., Vol. 17(7), pp 692-702, 1991.
A. Grnarov, J. Arlat, and A. Avizienis, "On the Performance of Software Fault-

Tolerance Strategies," Proc. FTCS 10, pp 251-253, 1980.
J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "A Large Scale
Second Generation Experiment in Multi-Version Software: Description and Early
Results", Proc. FTCS 18, pp 9-14, June 1988.

J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multi-version Programming", IEEE Trans. Soft. Eng., Vol. SE-12(1),
96-109, 1986.

J.-C. Laprie, "Dependability Evaluation of Software Systems in Operation," IEEE
Trans. Soft. Eng., Vol. SE-10 (6), 701-714, 1984.
B. Littlewood, and D.R. Miller, "A Conceptual Model of Multi-Version Software,"
FTCS 17, Digest of Papers, IEEE Comp. Soc. Press, pp 150-155, July 1987.
B. Littlewood and D.R. Miller, "Conceptual Modeling of Coincident Failures in
Multiversion Software," IEEE Trans. Soft. Eng., Vol. 15(12), 1596-1614, 1989.

D.F. McAUister, C.E. Sun and M.A. Vouk, "Reliability of Voting in Fault-Tolerant
Software Systems for Small Output Spaces", IEEE Trans. Rel., Vol 39(5), pp 524-534,
1990.

, ,, NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-23

[Nic90]

[Par90]

[Ran75]

[Sco84a]

[Sco84b]

[5co87]

[Shi88]

lTri82]

[Tso86]

[Tso87]

[Vou90]

V.F. Nicola, and Ambuj Goyal, "Modeling of Correlated Failures and Community Error
Recovery ha Multi-version Software," IEEE Trans. Soft. Eng., Vol. 16(3), pp, 1990.
A.M. Paradkar, "Performance Analysis of Multi-Stage N-Version Fault-Tolerant
Software," M.S. Thesis, North Carolina State University, 1990.
B. RandeU, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng., Vol.
SE-1,220-232, 1975.
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Experimental Validation of Six
Fault-Tolerant Software Reliability Models", IEEE FTCS 14,1984
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version
Dependence in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984
R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software Reliability
Modeling", IEEE Trans. Software Eng., Vol SE-13, 582-592, 1987.
T.J. ShimeaU and N.G. Leveson, "An Empirical Comparison of Software Fault-Tolerance
and Fault Elimination," 2nd Workshop on Software Testing, Verification and Analysis,
Banff, IEEE Comp. Sot., pp 180-187, July 1988.
K.S. Trivedi, "Probability and Statistics with Reliability, Queueing, and Computer
Science Applications, Prentice-Hall, New Jersey, 1982.
K.S. Tso, A. Avizienis, and J.P.J. Kelly, "Error Recovery in Multi-Version Software,"
Proc. IFAC SAFECOMP '86, Sarlat, France, 35-41, 1986.
K.S. Tso and A. Avizienis, "Community Error Recovery in N-Version Software: A
Design Study with Experimentation", Proc. IEEE 17th Fault-Tolerant Computing
Symposium, pp 127-133, 1987.
Vouk, M.A., Cagiayan, A., Eckhardt D.E., Kelly, J., Knight, J., McAllister, D.,
Walker, L., "Analysis of faults detected in a large-scale multiversion software
development experiment," Proc. DASC '90, pp 378-385, 1990.

NASA/NAG-i-983/Semi-Annual ReportsNo. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 5-24

Paper Appendix I

To select subsets of N-tuples with have certain properties such as approximately equal reliabilities we
used the following approach.

We first select acceptance test versions based on Estimate I data (for example, one low reliability,
one medium and one high reliability acceptance test). These versions are then removed from the pool
of 20 versions. Also removed from the pool might be versions which have either very low or very
high reliability to better balance reliabilities of the selected N-tuples. For a given N the remainder of
the versions (a subpool) are then randomly sampled without replacement until an N-tuple which has
notalreadybeen acceptedforthesubsetisformed.The averageN-mple reliabilityisthencomputed,
and ff it lies within the desired reliability range the N-tuple becomes a member the subset. Then the
N-tuple versions are returned to the subpool and the next N-tuple is selected in a similar manner, etc.
Once the subset contains either all possible combinations, or at least 600 N-tuples (whichever comes
f'trst), the subset is sorted by the average N-tuple reliability and standard deviation of the average
N-tuple reliability.

If a single reliabilitycategory is desired (e.g. between0.8 and 0.9) then the first 30 versions with the
smallest N-tuple standard deviation are chosen and run in the experiment.

If a range of reliabilities is desired, the range is divided into categories in such a way that members of
the same category have identical first two digits after the decimal point. Then from each category we
chose the combination that has the smallest standard deviation of the average N-tuple reliability.

We have thus selected a number of subsets. The following are mentioned in the text

bT-Teple Subset A (5 version systems, average 5-tuple reliability in the range 0.8 to 0.9, acceptance
test reliabilities of 0.67 (version 20), 0.93 (version 2) and 0.994 (version 18). Version 10 was not
used (too reliable).

N-Tuple Subset B (3 version systems, average 3-tuple reliability in the range 0.5 to 1.0, acceptance
test reliabilities of 0.67 (version 20), 0.89 (version 3) and 0.91 (version 17). Version 10 was used.

N-Tuple Subsets C and D were chosen in a manner similar to set B except that they consisted of
5-tuples and 7-tuples, respectively.

N-Tuple Subset E (5 version systems, average 5-tuple reliability about 0.91, no acceptance test)

• N'A_A/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(M V,DFI_/Mar-92 6-I

Appendix VI:
Cost Modelling of Fault-Tolerant Software

D.F. Mcallister and R.K. Scott

(Published in Information and Software Technology, Vol 33 (8), pp 594-603,
October 1991)

Cost modellingof fault-tolerantsoftware

D F McAllister and R K Scott*

Costs of a simplex or single-version system are compared with the
fidlon'ing three-version fault-tolerant s_ftware .U'stems: N-
version prograrnm#tg (NVP). recovery black (RB). and consen-
sus reco very block (CRB). Cost is m#timized suh/ect to a O'stetn
reliabifi O' constraott. The objective function _/ the optimization
program is of the form _,/(I - r,)', where the constants _, attd _t,
are fixed and the r, are variables that are refiabifities of the
versions, the acceptance tes: he case of RB and CRB and the
voter in the case of N VP u, 'B. The costs are compared for
different values of [_, and /ues of _, = 0.5, I, and 2.
Assuming that failures are hT_, _dent, C RB followed by RB are
the most cost-justifiable fault-tolerant techniques considered.
Unless the voter is perfect, N VP th_es not compete cost-wise with
the other two methods, htdeed, hi some cases it is worse than a

s#nph'x system.

cost modelling. [ault-tolerant software, system retiahifit r

There have been some attempts to model the cost of

multiversion fault-tolerant software. Saglietti and Ehren-
berger _ treated the problem of estimating Poisson arrival

rates of failure inputs to determine when it might be

more cost-effective to devote testing time to a single-

version versus a two-version system. Laprie et al.'- pre-

sented a simple cost model for the N-version program-

ming and recovery block fault-tolerant softy, are systems.
Their model is used to estimate values of parameters in

the models presented here. Scott et al? 6 introduced data

domain reliability models of several fault-tolerant sof-

tware schemes, including N-version programming

(NVP), recovery block (RB), and consensus recovery

block (CRB). These models are extended by coupling
them with a cost function and the results examined when

the cost is constrained by system reliability.
Scott et al? were first to show that failures can be

correlated in independently developed, functionally equi-

valent software versions, and they developed models that

could be used in treating this correlation in predicting

system reliability. The existence of correlated failures

was corroborated in an experiment by Knight et al. 7 and

again by Kelly et aU. To treat the failure correlation,

Arlat et al? presented Markov models based on the
identification of fault types and an analysis of the behav-.

iour of fault-activation. The model allows for positive

correlation among fauhs. Eckhardt and Lee _° presented

Department of Computer Science, North Carolina State Universit._.
Raleigh, NC 27695 8206, USA.
*IBM. PO Box 12195.Research Triangle Park. NC 27709. USA

another model for the analysis of coincident failures in
multiversion software.

If failures are dependent, Scott et al.'s models _ require

estimation of conditional probabilities, which signifi-

cantly increases the parameters in a reliability model.

Hence, for tractability the authors restrict their develop-

ment to three-version systems and assume that software
failures are statistically independent, i.e., that failures are

not correlated. The authors' results will provide a lower

bound on costs when failures are correlated as version,

voter, and acceptance test reliabilities must be higher to

meet a system reliability constraint that will increase

system costs.

The reliability of a software module is the probability

that it produces the correct result for a given input. The
authors" notation will be consistent with their previous

work. Let r_, r.,, and r3 be reliabilities of each version of a

three-version fault-tolerant system, let B be the reliabi/ity

of the acceptance test in RB and CRB, let V be the
reliability of the voter in NVP and CRB, and let S be the

system reliability. Then for NVP:

S_p(r_,r:,r_, I/) = V(r=r, + rjr_ + r,_ra- 2rjr_r_) (I)

In RB. it is assumed that the probz: :ty of rejecting a
correct answer is equal to the probe's=-: / of accepting an
incorrect one. In this case RB becor.

Saa(r_,r:,r_,B) = B(r_ + r_r,_+ rlr,.r_ + r.._B- 2r_r:B + r=r_B
+ r,.r._B- 4r_r,r_B + r_B'- - 2r_r_B:
- 2r._r_ + 4r,r,.r,_) (2)

w,hile CRB is defined by:

S<_a(r,.r:,r,B, V) = S_,(r_.r_,,rj,B) + S._vv(r,,r,..r,.L') -
S,,(r ,,r,.,r ,,B) S_v,(r l.r,..r ,.V) (3)

While the equations tend to become visually compli-

cated, they are simple to treat using a symbol manipula-
tion program such as Mathematica_L In addition, some

simplifying assumptions will be made for tractability and

understanding.

The optimization problem of minimizing systems cost

will be treated subject to the constraint that system relia-

bility is fixed. The nonlinear optimization problem
becomes:

Minimize C(r,,r:,r,B, tt)
subject to the constraint

S(rt,r,_,r.,B,V) = R.

(0)

Since reliabilities are probabilities, there are the addi-

r

tional constraintsthat the r,, B, II, and R must lie

between 0 and I.

The next section discusses the choice of a cost func-

tion. Then a special, easilysolved subcase of the con-

strained optimization problem is treated, followed by
treatment of a more general version of the optimization

problem, solved using Lagrange multipliers. Finally, the
results are summarized.

COST FUNCTION

It is assumed that the development cost increases expo-

nentially as the reliability of" a version approaches I. This

follows directly from data domain reliability modelling _

as adding a correct digit to the reliability estimate of a

software module requires an order-of-magnitude more
test cases if random testing is used. In addition, the cost

function should have the line r= 1 as a vertical asymp-

tote. There are many choices for a cost function with the

above properties, and the techniques proposed here can

be applied to others also. The authors have chosen the

cost function for a single version to be:

C(r) = [3(I-r) • + c

where r is the reliability of a version, and a, 13,and c are

positive constants that control the shape and location of

the cost function. The constants 13and c determine the

initial or start-up cost when r= 0. Since the optimization

results are independent of the constant c, which appears
linearly in the equation, it will be eliminated from the

definition of C henceforth. The final cost can be aug-

rnented b), c without changing the optimal reliabilities.
The constant a controls the rate at which the cost

increases as r approaches I, and the constant 13can be
used to control the initial cost and differences between

development and testing costs of each module. In the

most general case, each version, the acceptance test, and
the voter can have different values of Qt, 13with different

reliabilities. To reduce the dimensionality of the

problem, attention is restricted here to the casewhen a!].

versions have the same reliability r and a is the same for

all components, including the voter and the acceptance
test.

In the next section it is assumed that the reliabilities of

the acceptance test (B) and the voter (V) are equal to r.

The cost function in this case becomes _13,/(I-r) _ and

hence the sum of the 13sis just a muhiplicative constant.

The worst case is assumed where _13, is the number of
modules involved in the fault-tolerant system (including

the acceptance test and a voter).

Table I. Cost of three-version NVP assuming perfect voter and
no cost(13, = I, 13,= O)

_t=0.5 a= I a= 2

R rIR) C(R) U(R) C(R) U(R) C(R) U(R)

0.9 0.804200 6.8 3.2 15.3 10 78.2 100
0.99 0.941097 12.3 10 50.9 100 8642 10000
0.999 0.981630 22.1 31.6 163.3 1000 8890 1000000
0.9999 0.99,t215 39.4 I00 518.5 10000 89642 1E08
0.99999 0.998173 702 316.2 1642.0 100000 898760 I E l0

equal to the [3values of the versions because, in general,

an acceptance test and a voter should be less complex to

write and more easily tested than any of the versions.
Two subcases will be considered:

• the 13,of the versions are equal to I

• the 13,of the versions are decreasing in accordance with

the cost relationships proposed by Laprie et al.'-.

The authors will examine the behaviour of the cost func-

tion for different values of _ and try to summarize the

results and impart some intuition. The next section first

treats the special case when:

r, = r, = r, = B = V

This reduces the above optimization problem to a

straightforward root-finding problem for functions of a

single variable. It is more tractable than the general case

and provides useful bounds.

MINIMIZING COST SUBJECT TO

RELIABILITY CONSTRAINT

First the case is treated where all exponents :x are equal

and all reliabilities are constrained to be equal.

N-version programming

Since the model of NVP of Scott et al. 3 does not include

an acceptance test and assumes a perfect voter with no

cost (V = I and 13r = 0), it will be treated first. As it is

being assumed that r, = r, = r_ = r and 13, = 13_,= 133=

13_= I, the cost function becomes (C(r) = 3(I -r) -_ and

the system reliability is:

S_(r) = 3r-" - 2r ,_ (4)

The function S_vp(r) is monotone on the interval [0,1]

and hence the equation SNva(r) - R = 0 has a single real

root, denoted by r(R), in [0,1]. In this case the optimal

In the section after that the constraint wi!l :be relaxed. cost is:

that the reliabilities of the voter and the acceptance test

must be the same as the versions. There are parts of the

development cycle that are common to all versions, such
as the writing of the specification, and testing can be

done in parallel using such techniques as back-to-back

testing as recommended by Saglietti and Ehrenberger _

C(r(R)) = 3/(I - r(R))" (5)

As it is assumed that 13, = I, the cost of a system with a

single or unit version with the same system reliability is:

U(R) = I'(I-R) _ (5)

and Vouk _-_.It is to be expected that the 113values of the The right-hand side ofequation (5) is monotone increas-

acceptance test (13A)and the voter (13z) will be less than or ing in R. Table I presents its values for a = 0.5, 1, and 2

.... l a_ _,_ _ , io_I 595

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Figure 1, Graph of Sx_.e(r) with imperfect voter and V = r

'oF0.8 Consensus recov

'y=x

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Figure 2. Reliability of RB and CRB assuming r = B = V

Table 2. Cost of three-version NVP assuming nonperfect voter (,3,
=13,=1)

R r(R) a=0.5 :_= I 7=2

0.9 0.917647 13.9 48.6 589.8
0.99 0.990279 40.6 411.5 42329
0.999 0.999003 126,7 4012 4.0 E 6
0.9999 0,999900 400 40000 4 E 8
0.99999 0.999990 1264,9 4 E 5 4 E I0

for R = 0.9, 0.99, 0.999, 0.9999, and 0.99999. As would

be expected, the value of :t is critical in dra_ving conclu-

sions _hen comparing the cost of a single-version versus
a three-version fault-tolerant system When high system

reliability is required it is more likely that a three-version

system will be more cost effective than a single-version

system in the case that the voter is perfect and has zero
cost.

It is now assumed that the voter is neither perfect nor

cost free. Let V be the reliability of the voter and 13_= I.

The model for the reliability of a three-version system

,xhere all the version reliabilities are equal becomes:

Ssw(V.r) = V(3r:- 2r') (6)

Assuming a_. = a, and V = r, the reliabilit)constraint
becomes R = 3r 3 - 2r _. lfthe function 3r _ - 2r 4 for 0 _<

r _< I is graphed, it is found to be monotone and lies

below the line y = r (see Figure 1). The cost for this model

is C(r(R)) = (3 + 13v)/(i- r(R)) _. Table 2 assumes that

13v= 1, hence C(r(R)) = 4/(! -r(R)) _. The cost of a unit

version is the same as that given in Table I and is omit-
ted.

Note that the imperfect voter causes r(R) to be larger

for each R compared to the perfect voter case. A larger

r(R) implies a greater cost per version. It is clear that a

simplex system with the same system reliability will now

be less costly because r(R) ,_ R for R close to I. As the

same is being paid (in terms of _) for the voter as for the
versions, and it is assumed, that the development of n

versions is n times the cost of the development of a single

version, it can be the case that an imperfect voter 3MR

software system will be less cost effective than a simplex

system. While this appears to be a startling result, it is

Table 3. Cost of RB (B = r, _ta = a_)

R r(R) 7=0.5 a = I _t=2

0,9 0.790108 8.7 19.0 90.8
0.99 0.922202 14.3 51.4 660.9
0.999 0.971875 23.8 142 5047.8
0.9999 0.990438 40.9 418.3 43748
0.99999 0,996886 71.7 1284.5 4.1 E 5

due to the assumption of equal development costs (equal

13sand as). It will be seen that when the constraint that V
= r is removed and the 13sare allowed to decrease NVP

becomes more competitive.

Recovery block

If B = r then the system reliability becomes:

S,_(r) = 4r _ - 8r' + 2,-4 + 2r ' + r: (7)

This sixth-degree polynomial is also monotone in [0,1],

which implies Srs(r) - R has a single real root in [0,1].

Figure 2 includes a graph of Srs(r). Again assuming that

[38 = [3, = 1 and :_a = %, this gives Table 3, which
provides the values of C(R) -- 4/(I -r(R)p. Comparing

Tables I and 3, it is clear that RB is more cost effective

than three-version NVP with a perfect voter and is more

cost effective than a single-version system for high-relia-

bility cases.

Consensus recovery block

The reliability of the CRB 4 is given by equation (3). If V

= l, i.e., the voter has reliability I, and _,, = 0, then

S_vp(V,r) is given by equation (I). If it is also assumed

that B = r then SRB(r,B) is given by equation (,3), this

gives:

ScaB(r) = 8r_ - 28r_ + 28r _ + 2r_ - 12r_ - r4 + 4r'- (8)

This function is monotone over [0,1]. Table 4 assumes

that 13B= 1 and the voter has no cost. Hence C(r(R)) =

4/(1- r(R)p. It is seen that CRB with a perfect voter is
more cost effective than any of the previous systems, as

596 information and software technology

Ta_'e 4. Cost of CRB with perfect voter (B -- r, f_s = 13,= I, 13_.
= O, and as = _,)

R r(R) a = 0.5 _ = I a = 2

0.9 0.632687 6.6 - 10.9 29.6
0.99 0.796570 8.9 19.7 96.7
0.999 0.882487 11.7 34 289.7
0,9999 0.931504 15.3 58.4 852.6
0.99999 0.960196 20 100.5 2524.7

Table 5. Cost ofCRB (V = B = r, _t,. = _e = a,)

R r(R) a=0.5 _.= I a=2

0.9 0.698340 9.1 16.6 54.9
0.99 0.847012 12.7 36.7 213.6
0.999 0.920723 17.8 63 795.6
0.9999 0.959660 24.9 123.9 3072.5
0.99999 0.980051 35.4 250.6 12563

would be expected, and the cost grows relatively slowly

as R increases. For high-reliability systems, it will be

significantly cheaper than a single-version system,

If equation (2) is used for NVP and equation (3) for

RB then this gives:

S_u(r) = 8r '° - 28r _ + 28r ' - 2r- - Ill" 4- 5r' + r: (9)

This is also monotonic on [0,1] (see Figure 2), Table 5

gives the values when all 7s, rs, and Vand B are equal. As

it is assumed that 13t. = 134 = 1 then the cost function is

C(R) = 5/(I - r(R))_.
Graphs of equations (7) and (9) are given in Figure 2.
From Tables 1 to 5 and the assumptions of this

section, it is clear that the most cost-effective system in

terms of total cost is CRB with a perfect voter followed

by CRB with an imperfect voter. In general, CRB will be

significantl2r less costly than either N-version program-
ming, recovery block, or a single-version system. The

least cost-effective system is NVP with an imperfect

voter. Under the authors' assumptions it is even worse

than a simplex system with the same reliability. As it has

been assumed that all reliabilities are equal and all as are
equal these results provide an upper bound for the case

that r, V, and B are not required to have equal reliabili-
ties. This is demonstrated in the next section.

ELIMINATING EQUAL RELIABILITY
CONSTRAINT r = V = B

This section treats the case when r, B, and V can have

different values in the optimization problem (O). The

cost will be minimized subject to the constraint that the
system reliability must be met.

The authors have chosen to use the constrained opti-

mization technique of Lagrange muhipliers Is. Applying

this technique yields the following optimization problem.

Let X be a "Lagrange multiplier', C(x_,.v2,...x,,) the objec-

tive function to be optimized, and let G(x_,x2,...x,,) = K
be the constraint. Form the function:

u = C(x,,x., _,,) 4- kG(v,,x,_:,)

A solution (x, x., x,,, X) to the following set of nonli-

near equations is an optimal solution to the original

optimization problem:

?ulgx, = O,
?ul_x,. = 0,

Cui?.(:, = 0
G(x,,x: x,,) = K

The authors have applied unconstrained Newton's

method for several variables _3successfully for most cases
of this problem. The requisite partial derivatives were

calculated symbolically using Mathematica _L

Some discussion of the numerical properties of the

iterative technique is in order. Newton's method does

not guarantee convergence for arbitrary starting values.

Furthermore, convergence can occur at a point for which
r, V, or B lies outside the allowable range, i.e., these

values must be probabilities and lie in the interval [0,1].

Hence starting values are critical. The authors used a

Pascal program called MINCOST, which runs on an

IBM PC. All calculations were in double precision,

which is approximately 14 decimal digits. The program
allows the user to choose initial values for r, B, V, and L.
Newton's method uses a linearization of the nonlinear

equations and solves the linearized version to calculate
correction values to the current estimate of the solution.

Once the correction values are sufficiently small or the
number k of allowable iterations is exceeded the iteration

is halted. If convergence has taken place and the values
of r, B, or V lie outside the allowable range or if the
number of iterations k has been exceeded then a search

for a better starting value begins. This is accomplished by

adding and subtracting a change value 8 to each of r, V,
and B until convergence in range takes place. If no con-

vergence occurs for a given 8, then 28 is tried and the

search for convergence in range begins again. The pro-

cess continues until convergence is achieved or a reliabi-

lity lies outside [0, I]. If the system is used to find optimal
values for several different Rs then arranging these values

in ascending order, R_ < R_, <...< R,,, and using the

solutions for R, as starting values for the optimization

problem for R,_ _usually gives good results, especially if
the R, are 'close.'

For high system reliabilities of 0.9999 and 0.99999,
numerical instabilities sometimes occurred. The instabili-

ties manifested themselves when comparing costs for a

given value of a for 13values that were close (within 0. i).

To correct these instabilities, the authors employed a

technique called 'damped Newton '_6. Instead of adding

8, the Newton correction vector, a multiple of 8 is used.
The multiple (I/2_,j = 1, 2, 3,..., is chosen so that the
residual error decreases for successive iterations. When

damped Newton was applied the instabilities disap-

peared. Note thatj should not be chosen so large that the

vol 33 no 8 october 1991

1,000/-- .,....--......
o,995 I.-- _ ,-- --- -'- ""

_>, 0.990 _.- /
'--= 0.985 _"------_ Voter /

t_ -
o,97ov
o.985V Versiono.o oI_
o.955
09 0 _[| 1 li III I Ill I11 If ii I I|ii fll I IJJ

' 05.9800.983 0.985 0.988 0,990 0.993 0.995 0998

System reliability

Figure 3. Plot for NVP _;j <<s/on. voter, and acceptance
reliabilities for R = 0.98 to 0.99999. _ = 1. :t = I

components of 5 become smaller than the desired con-

vergence criterion, or else the process will appear to

converge prematurely.

N-version programming

Recall that if r_ = r_,= r_, equation (6) gives the reliabi-

lity:

S_p(r,l,') = V(2rJ- 3r-')

Recovery block

[f B is not equal to r then SRn(r,B) becomes the bicubic

polynomial:

S,_(r,B) = 4BV_ - 4B_r"-+ B_r - 4B:r _ + BZr + Br_ + Br"
+ Br (10)

Note that the surface S,_(r,B) is symmetric in r and B. As

it is assumed that r_ = r, = r3 = r, the cost function is of

the form k/(I-r) _ + 13n/(I-Bp. Hence it would be

expected that if k > 13n, i.e., r is weighted more than B,

which is usually the case, then r < B in the optimal
solution. It will be found that this is the case in the

numerical results.

Consensus recovery block

Sc,_(r,B,V) is given by equations (6) and (10) in terms of
S._vp and S,8 and equals:

r(B + B'- + B' + Br - 4B'r + Br: - 4B'r: + 4B_r: + 3rl"
- 2r-'V - 3Br:V - 3_r'-V - 3B'r'V- Br'l" + 2B:r'I" +
14B_r_V - Br'V + 12B_.r4V - 20B_r4V + 2Br'V- 8B:r'l,"
+ 8B'r'V) (ll)

Numerical results

The single-variable case discussed previously is a relati-

vely tight upper bound for the case when all 13values are
equal. Hence for quick approximations, assuming that

all reliabilities, 13sand as are equal gives good results and

is considerably more tractable. The minimum costs _vere

computed for several combinations of 13sand as for the

system reliabilities 0.9, 0.99, 0.999, 0.9999, and 0.99999.

Figures 3-5 are plots for NVP, RB, and CRB of the

E
E

8
E
O

o

t.000 _

0980 - "" •

0,960, Acceptance test ._._ .-.""" "" t ,/
0.940 _ "" "- "" '

0.920 i_

0.900

0,880

O.860

0.840 i liil ilill ill_lili|lliiliililillll III I

0.980 0.983 0.985 0.988 0.990 0.993 0.995 0.998

System reliability

FLqure 4. Plot .for RB of version, voter, aml acceptance

reliabilities for R = 0.98 to 0.99999, _ = I. _ = I

0.980I-
0.9601--

.. o.94ol- .,11
'_ 0920V. Version.%',,,,"/,_,.,,-
•-_ • . ..,-:......,,. /o.9oo1-

0.880_--" ._ __._..-.'_'_ " Acceptance/e-

0.860 ff-'-'-""*'_" "E test/
o.840[-

0 0.820 r __- Voter
o,8oor _/-

7 (_1 ltlllll illll il I tilO. 0 _
(_.980 0.983 0.985 0.988 0,990 0.993 0.995 0.998

System reliability

Figure 5. Plot for CRB of version, voter, and acceptance

reliabilities for R = 0.98 to 0.99999, _ = i, a = 1

version, voter, and acceptance reliabilities from R = 0.98

to R = 0.99999 in the optimal solution for the case that

the 13sare I and the as are equal and set to I. The cases

for _ = 0.5 and a = 2 are similar. Note that in Figure 3

the voter must be considerably more reliable than the

versions and that a simplex system is less costly by a
factor of 2 to 3. As shown in Figure 4, the acceptance test

must also be more reliable than the versions, but by at

most 0.05. The RB is less costly than a simplex system in

this range, with the difference in costs increasing as
higher system reliability is required. The CRB is also less

costly than a simplex system. Figure 5 shows that the

acceptance test must be more reliable than either the

voter or the versions, and thei'e-is a crossover point
where the voter must be more reliable than the versions.

The cost ratio between CRB and RB is approximately
0.5 to 0.6.

For _ = 0.5, a simplex system was less costly than

either RB or CRB until system reliability was above 0.99.

This was not true for _ = ! or _ = 2. This implies that as

a increases, both RB and CRB will be relatively less

costly for high system reliability. Figure 6 shows the

optimal cost versus system reliability of each of the fault-

tolerant techniques considered.
As the objective function is linear in the constants 13,

for a given fault-tolerant technique holding the _s fixed

will result in identical optimal values for r, V, and B for a

information and software technology

O

o

O
.J

0.980

0.960

0.940

0.920

0.900

0.880

0.860

0.840

0820

0.800

0.780

11.0100

- / verslon
.....-'" • 9.0

.-- _" "" RB.._-_ 8.0

...... 70

i[i ii ii] iIi I I JIII.L.LI J i I ill J 11] i Ii Jl IIII

0.980 0.983 0.985 0.988 0.990 0.993 0.995 0.998

System reliability

Figure 6. Optimal cost versus system reliability of each

fault-tolerant technique considered, _t = fl = I

60

5.0

Single version

rb

_ J
crb

1 I I t
0.2 0.4 0.6 0.8 1.0

Figure 8. Log (cost)for R = 0.99999, ot = 1, _v = [35 =

0.1(0.I)1

6.0

5.5

50

4.5

40

3.5!

3.0

- Single version

_y
crb

02 0,4

l I]
06 08 10

Figure 7. Log (cost).for R = 0.99999. :t = 0.5. _ = 13,

= 0.1(0.1)1

given system reliability R if all 13s in the objective func-

tion are multiplied by the same constant k. Hence the

problem is interesting only when the values of the 13sare

changed relative to each other for given values of the _ts.

To avoid getting lost in a morass of data the problem has
been partitioned into three eases. In the first two cases

the values of the 13sfor the versions are set to 1 and the

optimal system costs calculated for the cases R = 0.9,

0.99, 0.999, 0.9999, and 0.99999 for various values of 13_

and 13n.The Appendix, Tables 8-13, gives the results for
13, = [3B= 0.1 and I and _t = 0.5, I, and 2.

Case 1

In case I both the 13values for the acceptance test and the

voter are equal: they were varied from 0. I to 1.0 in steps
of 0. I. These results are plotted for the case R = 0.99999

in Figures 7-9. In all cases, for a given system reliability
R the cost of NVP > cost of RB > cost of CRB. As

increased, the difference between the three increased con-

siderably, often by several orders of magnitude. For R =

0.99999 and _x= 0.5, CRB is an order of magnitude less

costly than NVP. For _ = 2, the difference increases to

over six orders of magnitude.

Also, for a given system reliability, r_vp > rRB > rcR_,

_'_vr, > VcR_, and BR_ > Bc_,. Except for low s_stem
reliabilities (R = 0.9), it was also the case for CRB that B

22.00

20.00

18.00

16.00

14.00

12.00

10.00

Single version

w

rb

I I I

0.2 04 0.6 0,8 1.0

Figure 9. Log (cost)for R = 0.99999, ot = 2, 13v= _ =
0.1(0.1)1

> V > r. The acceptance test is considerably more
critical than the voter or the versions.

RB and CRB were always less costly than a simplex

system, which was not the case for NVP. As the voter

became more costly to develop (13r approached 1), the

difference between a simplex system and NVP became
more pronounced. Even if the voter and the acceptance

test have the same development cost as the versions, it is

always better to implement CRB than any of the other
techniques.

It is clear that a has a more significant effect on cost

than either 138or 13v.Both RB and CRB are approxima-

tely loglinear for larger values of [3v and 13aless than I.

Case 2

In case 2, as the CRB requires an acceptance test and a

voter, to gain some intuition on the relationships

between 13vand _B they are varied from 0.25 to I in steps

of 0.25. As in case I the 13s for the versions are I. In

Figure l0 the cost is shown as a two-variable function of

_v and 13s for the case a = I and R = 0.99999. The cases
for u = 0.5 and 2 are similar.

The function is monotone in both variables. The cost

is slightly more affected by an increase in 13a.

The results for cases I and 2 were consistent among the
cases considered.

vol 33 no 8 october 1991 599

_ 231.4

_ "157.4
I

0,o.251

Figure 10. Plot of cost of CRB as function of_,. and _3nfor

case _ = I, R = 0.99999, _n and _. = 0.25(0.25) l

"iable 7. Values of 13from Laprie et aL 2

Low Average [tigh

NVP

RB

CRB

First version 1.000 1.000 1.000
Other versions 0.390 0.600 0.805
Voter 0.00l 0.051 0.100

First version 1.000 1,000 1.000
Other versions 0.390 0,610 0.830
Acceptance test 0.001 0.151 0.300

First version 1.000 1.000 1.000
Other versions 0.390 0.610 0,830
Voter 0.00l 0.051 0.100
Acceptance test 0.001 0.151 0.300

Table 6. Calculation of 13susing minimum, maximum, and aver-
age costs

NVP RB CRB

[3, 1.78.2.25, 2.71 1.78.2.37.2.96 RB}-", + [3,

[3, I.O0 1.00 1.00

_, 0.00l(-- 0), - 0.001(_0). 0.05.
0.05. O.I 0.0 t

13,_ - 0.001(_OL 0.001(,-0), 0.15,
0.15.0.3 0.3

r_:= r_-._/2_v..p,-13,- 121Yp-f_, _2_.p,-f_,-
p,) - p.) 9, - 13.)

Case 3

In this case the range of costs proposed by Laprie et aL:
was used for implementing NVP and RB. Their costs are

expressed as the ratio of the fauh-tolerant system cost to

a simplex ststem cost for three environments: a maxi-

mum, a minimum, and an average cost. Furthermore,

they have proposed that the cost of the voter in an NVP

system varies from 0 to 0. I of the cost of a single version.

Similarly, the overhead for RB ranges from 0 to 0.3 of a

single-version cost.
For each method of fault tolerance three runs were

made using their maximum, minimum, and average

costs. The values of the optimal solutions are given in

Tables 14-16 in the Appendix, First, it was assumed that

the t3s in the model should sum to their ratio, then the

costs were normalized to the primary or first version's

cost by setting 13_= I. Table 6 shows how the other 13s
were calculated.

The values of the 13sfor the low, average, and high cost

environments are given in Table 7. It was assumed that
the cost of the second and third versions were the same

and that for CRB, [3_ was the same as for NVP and 13a
was the same as for RB.

Considering Table 14 and Figure 11 (see Appendix).

the minimum cost environment, it can be seen that in all

cases except for the lowest system reliability requirement

using NVP that a software fault-tolerant s_stem is

cheaper to implement than a simplex system with the

same reliability. Also CRB is less expensive than RB,

which is in turn cheaper than NVP. As the programming

environment becomes more expensive, as in the average

cost case. Table 15 and Figure 12 (see Appendix) show

that the required system reliability must be greater than

0.95 for NVP to be cost competitive with a simplex

system. The RB and CRB are always much cheaper than

a simplex system. Similar results appear in Table 16 and

Figure 13 (see Appendix) for NVP systems in a maxi-

mum cost environment. Also note that due to the high

cost of the acceptance test, RB only becomes cost effec-

tive as the system reliability approaches 0.95. In all cases,

the CRB provides the cheapest system reliability, even

though five different software modules are required:

three versions, a voter, and an acceptance test.

SUMMARY AND CONCLUSIONS

The above results have shown that in the case that fai-

]ures are independent, consensus recovery block

followed by recovery block are the most cost-justifiable

fault-tolerant techniques to be considered. Unless the

voter is perfect, N-version programming does not com-

pete cost-wise with the other two methods. Indeed, in

some cases it is worse than a simplex system. It is inter-

esting to note that consensus recovery block, which con-

tains both voting and recovery block, can provide con-

siderable reduction in cost for a given system reliability

over the other techniques, even when the cost of develop-

ment of the voter and the acceptance test is the same as
for the versions.

The authors are currently attempting to relax the con-

dition that all version reliabilities are equal and that

failures are independent. They intend to move to five-

and seven-version systems to determine how costs are
related.

600 information and software technology

v.

ACKNOWLEDGEMENT

This research was supported in part by NASA grant

NAG I 983- 1.

REFERENCES

I Saglietfi, F and Ehrenberger, W 'Software diversity some
considerations about its benefits and limitations' in Proc.

IFAC SAFECOMP '86 (1985) pp 27-34

2 Laprie, J-C, Arlat, J, Beounes, C and Kanoun, K 'Definition

and analysis of hardware- and software-fault-tolerant
architectures" Computer (July 1990) pp 39 51

3 Scott, R K, Gault, J W, McAIlister, D F and Wiggs, J
"Experimental validation of six fault-tolerant software

reliability models' IEEE Fault Tolerant Comput. Syst. Vol

14 (1984) pp 102-107
4 Scott, R K, Gault, J W and McAIlister, D F 'The consensus

recovery block' in Proc. Total Systems Reliability Syrup.

(December 1983) pp 74-85
5 Scott, R K, Gault, J W and McAllister, D F 'Modeling fault-

tolerant software reliability' in Proc. Third Syrup. Reliabi-

lit)' in Distributed Software and Database S),stems (October

1983) pp 15-27
6 Scott, R K, and Gault, J W and McAIlister, D F 'Fault-

tolerant software reliability modeling' IEEE Trans. Soft.

Eng. Vol 13 No 5 (May 1987) pp 582-592

7 Knight, J C and Leveson, N G 'An experimental evaluation

of the assumption of independence in multiversion pro-
gramming' IEEE Trans. Soft. Eng. Vol 12 No I (January

1986)

8 Kelly, J J P J, Eckhardt, D E, Caglayan, A et aL "Large

scale second generation experiment in multi-version soft-

ware: description and early results" IEEE Fault Tolerant

Comput. Svst. Vol 18 (June 1988) pp 9-14
9 Arlat, J, Kanoun, K and Laprie, J-C 'Dependability model-

ing and evaluation of software fault-tolerant system" IEEE

Trans. Computers Vol 39 No 4 (April 1990) pp 504-513

10 Eckhardt, D E and Lee, L D 'A theoretical basis for the

analysis of multiversion software subject to coincident
errors' IEEE Trans. Soft. Eng. Vol I I No 12 (December
1985)

I 1 Wolfram, S Mathematica Addison-Wesley (1988)

12 Vouk, M A "Back-to-back testing'/_ Soft. Technol. Vol 32

No 1 (January-February 1990) pp 34-45

13 Shoup, T E Nunwrical methods for the personal computer
Prentice Hall (1983) pp 64-_59

14 Vouk, M A, McAllister, D F, Caglayan, A et al. 'Analysis of

faults detected in a large-scale multi-version software deve-

lopment experiment' in Proc. Digital Avionics St'stems

Conf. (October 1990)
15 Taylor, A E and Mann, W R Advanced calculus (2nd ed)

John Wiley (1972) pp 197-198

16 Conte, S D and de Boor, C Elementary numerical analysis:

an algorithmic approach McGraw-Hill (1980)

APPENDIX

4°I3.5

" 3.0

20I- j j+-

0.90000 0.95000 0.99000 0.99900 0.99990 0.99999

System reliability

Figure II. Plot of costs for minimum cost environment

Table 8. Component reliability and log (cost)

One version NVP RB CRB

• Cost r V Cost r B Cost r B V Cost

0.90000 0.50000 0.82200 0.98229 0.89554 0.58268 0.96387 0.71350 0.50993 0.93884 0.80310 0.69154

0.99000 1.00000 0.94858 0.99764 1.18439 0.81147 0.98905 0.89570 0.71185 0.97204 0.92418 0.81624

0.99900 1.50000 0.98481 0.99968 1.47677 0.91483 0.99659 1.07887 0.82594 0.98627 0.96703 0.93424

0.99990 2.00000 0.99556 0.99996 1.78271 0.96181 0.99899 1.26714 0.89390 0.99323 0.98527 i.05114

0.99999 2.50000 0.99872 0.99999 2.10782 0.98307 0.99971 1.46212 0.93517 0.99672 0.99340 !.16907

13, = 13.,= t3, = 1.0 and 13o = 13,- = O. 1

_l --- __, = _3 = _s -- '/r = 0.5

Table 9. Component reliability and log (cost)

One version NVP RB CRB

r Cost r V Cost r B Cost r B V Cost

0.90000 0.50000 0.86367 0.94806 1.09735 0.69952 0.87230 0.91757 0.65491 0.81071 0.55906 0.94994

0.99000 1.00000 0.96368 0.99384 1.45455 0.87573 0.95772 1.12626 0.81259 0.90639 0.81011 1.09667

0.99900 1.50000 0.99016 0.99929 1.83078 0.94863 0.98644 1.33895 0.89334 0.95253 0.91649 1.23644

0.99990 2.00000 0.99737 0.99992 2.23250 0.97946 0.99594 1.56386 0.93865 0.97634 0.96359 1.37754

0.99999 2.50000 0.99931 0.99999 2.65873 0.99223 0.99882 1.79996 0.96479 0.98857 0.98427 1.52264

13, = 13, = 13, = 1.0 and 13s = 13r = 1.0

_l = _-" = _ ----O{s= _r' = 0.5

Kill

Table !0. Component reliability and log (cost)

Onc version NVP RB CRB

r Cost r - _" Cost r B Cost r B V , Co_d

0.90000 1.00000 0.83374 0.97165 1.33386 0.61578 0.93859 0.97480 053968 0.90186 0.78784 0.90350

0.99000 2.00000 0,95511 0,99584 1,95841 0,83342 0.97949 1.35956 0.73662 0.95220 0.90988 116412

0.9_:_ _ O00f'_ 0.98809 0.99942 2.62826 092833 0,99313 1.75139 0.84501 0.)7545 0.95835 1.41212

0.99990 O.U:)701 0.99993 3.3;4_, 0.97007 0.99782 2.16486 0.90833 0.98742 0.98051 1.66093

0.99999 _.OUU00 0.99929 0.99999 4.20429 0.98804 0.99934 2.60454 0.94602 0.99368 0.99094 1.91617

13, = t_: = 13, = I0 and 13_ = 13, = 0.1

Table ! I. Component reliability and log (cost)

One version NVP RB CRB

r Cost r l Cost r B Cost r B V Cost

0.90000 1.00000 0.87379 0.94119 1.61039 0.72391 0.85161 1.24564 0.66635 0.77721 0.61989 1,20711
_.37.18 0.89114 0.94788 1.66973 0,82220 0188843 0.82888 1500780.99000 2.00000 0.96971 0.99268 _

0.99900 3.00000 0.99287 0.99915 3,~0:99 0,95789 0,98211 2.10430 0 90155 0.94266 0.92081 1,78204

0.99990 4.00000 0.99838 0.99991 4.10399 0.98468 0.99420 2.56600 0,94549 0.97098 0.96360 2.06807

0.99999 5.00000 0.99998 0.99999 5.39217 0.99478 0.99817 3.04898 0.97029 0198572 0.98345 2.36445

13, = _: = _, = t.0and[3, = 13, = 1.0

Table 12, Component reliabiliD and log (cost)

One ",ersion NVP RB CRB

r Cost r I' Cost r B Cost r B V Cost

0.90000 2,00000 0.85226 0,95646 2,27921 0.66513 0.90020 1.56577 0,58157 0,84795 0,76864 1.36788

0.99000 4.00000 0.96539 0,99349 3.68686 0.86413 0.96432 2.38211 0.76955 0.92293 0.89333 1.91442

0.99900 6,00000 0.99262 0.99916 5.29587 0.94614 0.98742 3.22177 0.86954 0.95946 0.94806 2.43804
0.99990 8,00000 0.99857 0.99991 7.10773 0.97995 0.99581 4.11933 0.92639 0.97889 0,97471 2.97057

0.99999 10,00000 0.99966 0.99999 8.71782 0.99305 0.99865 5,06931 0.95919 0.98929 0,98786 3.52524

= 13: = 13, = I.Oand 13_ = p, = 0.1

_j = 3¢. = _ = '_a = '_J = 2.0

Table 13, Component reliability and log (cost)

Onc version NVP RB CRB

," Cost r _ Cost r B Cost r B V Cost

0.90000 2.00000 0.88586 0.93371 2.66075 0.74766 0.83054 1.91349 0.67738 0.74782 0.65793 1.72504

0.99000 4.00000 0,97652 0,99161 4.29364 0.90399 0.93840 2.77012 0,83108 0.87285 0.83906 2.31301

0.99900 6.00000 0.99548 0.99906 6.10758 0.96442 0.97811 3.64887 0,90877 0.93426 0,92203 2,87869

0.99990 8.00000 0,99917 0,99990 8.03590 0.98765 0.99265 4.58190 0.95121 0.96652 0.96252 3.45699

0.99999 10.00000 0.99976 0.99998 9.42361 0.99593 0.99762 5.55410 0.97457 0.98342 0.98225 4.05876

p = [_: = 13,= IOandp,= p, = 1.0

_q = =Cz = _t_ = '/a = "/_ = 2.0

Table 14. Component reliability and log (cost)

One vcrsion NVP RB CRB

r Cost r -7 I/ Cost r B Cost r B V ' Cost

0.90000 1.00000 0.80863 0.99541 0.97860 0.54795 0.99057 0.60677 0.45886 0.98463 0,95925 0.52878

099000 2.00000 0.94341 0.99924 1.51543 0.79237 0.99688 0.94908 0.67538 0.99270 0.98332 0.75437

0.99900 3.00000 0.98286 0.99987 2.04771 0.90479 0.99893 1.29284 0.80100 0.99623 0.99216 0.97023

0.99990 4.00000 0.99487 -0.9999_, 2_59536 0.95658 0.99964 1.64132 0.87699 0.99803 0.99618 1.18297
0.99999 5.00000 0.99816 0.99999 3.04677 0.98036 0.99989 1.99720 0.92375 0.99897 0.99812 1.39535

Low cost cnvironment

Table 15. Component reliability and log (cost)

One version NVP RB CRB

r Cost r I/ Cost r B Cost r B V Cost

0.90000 1.00000 082948 0.97541 1.17540 0.64270 0,91782 0,90583 0.56042 0.85763 0.84523 0.80891
0.99000 2.00000 0.95329 0.99632 1.78498 0.84860 0.97233 1.30363 0.75034 0.92910 0,93461 1.07194

0.99900 3.00000 0.98737 0.99947 2.43328 0.93648 0,99075 1.70983 0.85397 0.96282 0.97016 1.32165

0.99990 4.00000 0.99676 0.99993 3.15311 0.97437 0,99708 2.14078 0.91420 0,98053 0.98626 1.57218

0.99999 5,00000 0,99926 0.99999 3.90712 0,99023 0.99911 2.59855 0,94986 0.99000 0.99373 1.82932

A',erage cost environment

Table 16. Componen! reliability and log (cost)

Onc version NVP RB CRB

r Cost r I" Cost r B Cost I" B V Cost

0.90000 1.00000 0.83552 0.97010 1.28359 0.66553 0.89989 1,03939 0.58549 0.82471 0.82487 0.93951

0.99000 2.00000 0.95586 0.99565 1.91439 0.86104 0.96598 1.44654 0.76755 0.91192 0.92538 1.20922

0.99900 3.00000 0.98837 0.99940 2.59301 0.94296 0,98859 186293 0.86547 0.95365 0.96604 1.46523

0.99990 4.00000 0.99707 0.99992 3.31928 0.97765 0,99639 2.30558 0.92183 0.97572 0.98447 1.72282

0.99999 5.00000 0.99907 0.99998 3.93675 0.99180 0.99889 2.77405 0.95489 0.98755 0.99297 1.98810

High cost environment

3.5

3.0

2.5
2.0

5.0--
4.5-

4.0 - _+ _,_+

0,5 1 I 1 1 . I

0.90000 0.95000 0.99000 0.99900 0.99990_ 0,99999

System reliability

Figure I2. Plot _?/" costs us programming environment

_(dcon]('S tllOI'L' e.vpetlsive

5,0

4.5

4.0

3.5

3.0

o= z5
_d

2.0

1.5

1£

0.,,5

: sy
fj.

I I I I I

0.90000 0.95000 0.99000 0.99900 0.99990 0.99999

System reliability

Figure I3. Plot qf costs for maximum cost environment

F

..... i'

